Hot Workability of the Mg65Cu20Y10Ag5 Amorphous/ NanoZrO2 Composite Alloy within Supercooled Temperature Region


Article Preview

Mg65Cu20Y10Ag5 Amorphous/ nano ZrO2 composites alloy powder were fabricated through the combination method of melt spinning and mechanical alloying (MA). The melt spun amorphous matrix ribbons are ground into powders and mixed with 3 vol.% ZrO2 nano particles in the planetary mill. After then formed by hot pressing in Ar atmosphere under the pressure of 700 MPa at the temperature of soft point which measured by TMA (Thermal mechanical Analysis). The hot-pressed bulk composite specimens are compression tested at different temperature within the supercooled temperature region. The flow stress was found decrease with increasing temperature dramatically when the temperature exceeds the middle temperature of supercooled region. The specimens after compression test were examined by X-ray diffractometry and SEM to investigate its crystallinity and fracture mechanism.



Main Theme:

Edited by:

Di Zhang, Jingkun Guo and Chi Y. A. Tsao




L.J. Chang et al., "Hot Workability of the Mg65Cu20Y10Ag5 Amorphous/ NanoZrO2 Composite Alloy within Supercooled Temperature Region", Key Engineering Materials, Vol. 351, pp. 103-108, 2007

Online since:

October 2007




[1] A. A. Lou, J. Metals, 54-2 (2002) 42.

[2] M. O. Pekguleryuz, H. Kaplan, R. Neelameggham, J. Hryn, B. Powell, G. Cole, and J. F. Nie, J. Metals, 54 -8 (2002) 18.

[3] D. L. Albright, F. Bergeron, R. Neelameggham, A. A. Luo, H. Kaplan, and M. O. Pekguleryuz, J. Metals, 54 -8 ( 2002) 22.

[4] T. G. Nieh, J. Wadsworth and O. D. Sherby, Superplasticity in Metals and Ceramics, Cambridge Univ. Press, Cambridge, UK, 1997, p.261.

[5] M. Mabuchi and K. Higashi, Mater. Trans. JIM, 35 (1994) 399.

[6] T. Imai, S. Kojima, G. L'Esperance, B. Hong and D. Jiang, Scripta Mater., 35 (1996) 1199.

[7] B. Q. Ham and K. C. Chan, Scripta Mater., 36 (1997) 593.

[8] T. G. Nieh, R. Kaibyshev, F. Musin and D. R. Lesuer, Superplasticity and Superplastic Forming, ed. A. K. Ghosh and T. R. Bieler, TMS, Warrendale, PA, 1998, p.137.

[9] A. J. Ardell, Metall. Trans., 16A (1985) 2131.

[10] B. Y. Lou, T. D. Wang, J. C. Huang, and T. G. Langdon, Mater. Sci. Forum, 357-359 (2001) 545.

[11] B. Y. Lou, Ph.D. Thesis, National Sun Yat-Sen University, Taiwan, (1999).

[12] R. Y. Huang, S. C. Chen, and J. C. Huang, Metall. Mater. Trans., 32A (2001) 2575.

[13] T. D. Wang and J. C. Huang, Mater. Trans. JIM, 42 (2001) 1781.

[14] A. Inou, K. Ohtera, K. Kita, T. Masumoto, Jpn. J. Appl. Phys., 27 (1988) L2248.

[15] K. Amiya and A. Inoue, Mater. Trans. JIM, 41 (2000) 1460.

[16] G. Yuan, T. Zhang, and A. Inoue, Mater. Trans., 44 (2000) 1460.

[17] A. Inoue and T. Masumoto, Mater. Sci. Eng. A, 133 (1991) 6.

[18] A. Inoue, A. Kato, T. Zhang, S. G. Kim, T. Masumoto, Mater. Trans. JIM, 32-7 (1991) 609.

[19] A. Inoue, T. Zhang, T. Masumoto, J. Non-Cryst. Solids, 156-158 (1993) 473.

[20] H. Choi-Yim, R. D. Conner, F. Szuecs, W. L. Johnson, Acta mater. 50 (2002) 2737.

[21] H. Kato, T. Hirano, A. Matsuo, Y. Kawamura, A. Inoue, Scripta Mater, 43 (2000) 503.

[22] W. Zhang, S. Ishihara, and A. Inoue, Mater Trans., 43 (2002) 1767.

[23] Y. K. Xu, H. Ma, J. Xu, and E. Ma, Acta Mater., 53 (2005) 1857.

[24] J. S. Benjamin, Met. Trans., 1 (1970) 2943.

[25] J. S. Benjamin and T. E. Volin, Met. Trans., 5 (1974) (1929).

[26] B. D. Cullity and S. R. Stock, Elements of X-ray Diffraction, Prentice Hall 2001, p.170.

Fetching data from Crossref.
This may take some time to load.