Preparation and Wear Resistance of TiN/Ti Deposition and Diffusion Multi-Layers by Plasma Alloying Process

Abstract:

Article Preview

High quality TiN/Ti multi-layers have been successfully obtained on a carbon steel substrate by double glow plasma surface alloying technique (DGP). The TiN/Ti multi-layers consists of deposition layer and diffusion layer, and then on its surface TiN film (PVD) is deposited to form TiN/TiN/Ti compound multi-layers. In addition, studies were carried to compare TiN/Ti multi-layers, TiN/TiN/Ti compound multi-layers and TiN film (PVD) directly deposited on the surface of the carbon steel and their microhardness and dry friction-abrasion properties were also investigated. The results show that the thickness of TiN/Ti multi-permeated layers is above 10*m; Ti and N concentrations change gradually along the depth of alloying layer. TiN/Ti multi-layers and substrates are metallurgically bonded. Preferred orientation of TiN/Ti multi-layers is crystal surface (200). The hardness of the TiN/Ti multi-permeated layers ranges up 2200HV, its average friction coefficient is lower, abrasion crack is shallower and wear resistance better.

Info:

Periodical:

Key Engineering Materials (Volumes 353-358)

Edited by:

Yu Zhou, Shan-Tung Tu and Xishan Xie

Pages:

1712-1715

DOI:

10.4028/www.scientific.net/KEM.353-358.1712

Citation:

Y. P. Liu and F. Xing, "Preparation and Wear Resistance of TiN/Ti Deposition and Diffusion Multi-Layers by Plasma Alloying Process", Key Engineering Materials, Vols. 353-358, pp. 1712-1715, 2007

Online since:

September 2007

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.