Surface Plasma Molybdenized Burn-Resistant Titanium Alloy


Article Preview

Conventional titanium alloy may be ignited and burnt under high temperature, high pressure and high gas flow velocity condition. In order to avoid this problem, a new kind of burn-resistant titanium alloy-double glow plasma surface alloying burn-resistant titanium alloy has been developed. Alloying element Mo is induced into the Ti-6Al-4V substrate according to double glow discharge phenomenon, Ti-Mo binary burn-resistant alloy layer is formed on the surface of Ti-6Al-4V alloy. The depth of the surface burn-resistant alloy layer can reach about 100 microns and alloying element concentration can reach 59%. High energy laser ignition experiments reveal that the ignition temperature of alloyed layer with Mo concentration about 10% is about 200°C higher than ignition temperature of Ti-6Al-4V.



Key Engineering Materials (Volumes 353-358)

Edited by:

Yu Zhou, Shan-Tung Tu and Xishan Xie




P. Z. Zhang et al., "Surface Plasma Molybdenized Burn-Resistant Titanium Alloy", Key Engineering Materials, Vols. 353-358, pp. 1837-1841, 2007

Online since:

September 2007




[1] Gunaji Mohan V., Sircar Subhasish, Beeson Harold D., Proceedings of the Symposium on Flammability and Sensitivity of Materials in Oxygen-Enriched Atmospheres, 1995, Denver, USA.

DOI: 10.1520/stp16428s

[2] Wilson D. Bruce; Stoltzfus Joel M., Proceedings of the 1997 8th International Symposium on Flammability and Sensitivity of Materials in Oxygen-Enriched Environments, 1997, San Diego, USA.

[3] V. I. Bolobov: Combustion Explosion and Shock Waves, Vol. 38 (2002), p.635.

[4] V. Rosenband: Combustion and Flame Vol. 137 (2004), p.366.

[5] UK Patent Application 2, 238, 057, (1987).

[6] D. Eylon: J. of Materials Vol. 6 (1994), p.14.

[7] D.W. Anderson, A.F. Condliff, International Conference on Titanium Products and Applications, Titanium Development Association (1994) 91.

[8] J.O. Hansen, D. Novotnak, M.F. Welter, J.R. Wood: Titanium' 95: Science and technology (1995), p.675.

[9] Y.G. Li, P.A. Blenkinsop, M.H. Loretto, D. Rugg and W. Voice: Acta Mater. Vol. 47 (1999), p.2889.

[10] Y.G. Li, M.H. Loretto, D. Rugg and W. Voice: Acta Mater. Vol. 49 (2001), p.3011.

[11] X. Wu, R. Sharman, J. Mei, W. Voice: Materials and Design Vol. 23 (2002), p.239.

[12] X. Wu, R. Sharman, J. Mei, W. Voice: Materials and Design Vol. 25 (2004), p.103.

[13] Y.Q. Zhao, L. Zhou, J. Deng: Journal of Alloys and Compounds Vol. 284(1999), p.190.

[14] K.Y. Zhu, Y.Q. Zhhao, H.L. Qu, Z.L. Wu, X.M. Zhao: Journal of materials science Vol. 35 (2000), p.5609.

[15] Y.Q. Zhao, W.L. Wu, X.D. Ma, et al: Materials Science and Engineering A Vol. 373 (2004), p.315.

[16] Y.Q. Zhao, H.L. Qu, M.M. Wang, H. Wu, K.Y. Zhu, Journal of Alloys and Compounds 407(2006) 118.

[17] Z. Xu: US Patent 4, 520, 268 and 4, 731, 539, UK Patent 2, 150, 602, Austria Patent 580, 734, Canada Patent 1, 212, 486, Sweden Patent 8500364-8.

[18] P.Z. Zhang, Z. Xu, et al: The Chinese Journal of Nonferrous Metals, 15, 110 (2005).

[19] P.Z. Zhang, Z.H. Li, Z.Y. He: Armament Mater. Sci. and Eng. Vol. 28 (2005), p.18.

[20] Y.Q. Liu: Burn-resistant mechanism research and properties prediction of burn-resistant titanium alloy, Ph. D Thesis, Beijing Non-ferrous Metal Research Institute (1999).

[21] P.Z. ZHANG, Z. XU: Journal of Nanjing University of Aeronautics &Astronautics Vol. 37(5), pp.582-586.

[22] P.Z. ZHANG, Z. XU: Plasma surface alloying of Ti alloy for enhancing burn-resistant property, Transactions of Nonferrous Metals Society of China, in press.

Fetching data from Crossref.
This may take some time to load.