Computer Aided Development of the Crack-Free Laser Welding Processes

Abstract:

Article Preview

The present paper describes the new methodology used for the development of the crackfree welding processes. The presented approach is based on the accurate experimental observations on binary Al-Si alloys, which clearly demonstrate that the crack initiation is a result of the accumulation of macroscopic tensile strain in a microscopic intergranular liquid film of segregates at the final stage of the weld metal solidification. The numerical model takes into account the effects of strain accumulation as well as the influence of thermo-dynamical and thermo-mechanical properties of the welded material. The new approach provides a clear phenomenological interrelation between the cracking susceptibility, parameters of the welding process and properties of the base and filler material. It is successfully applied for development of technological means for elimination of the solidification cracking during welding of aluminium alloys AA6056, such as a multi-beam welding.

Info:

Periodical:

Key Engineering Materials (Volumes 353-358)

Edited by:

Yu Zhou, Shan-Tung Tu and Xishan Xie

Pages:

1984-1994

Citation:

V. Ploshikhin et al., "Computer Aided Development of the Crack-Free Laser Welding Processes", Key Engineering Materials, Vols. 353-358, pp. 1984-1994, 2007

Online since:

September 2007

Export:

Price:

$38.00

[1] A. RE. Singer and P.H. Jennings: Journal of The Institute of Metals Vol. 73 (1946), pp.197-212.

[2] A. RE. Singer and P.H. Jennings: Journal of The Institute of Metals Vol. 73 (1947), pp.273-284.

[3] P.H. Jennings, A. RE. Singer and W.I. Pumphrey: Journal of The Institute of Metals Vol. 74 (1948), pp.227-248.

[4] W.I. Pumphrey and J.V. Lyons: Journal of The Institute of Metals Vol. 74 (1948), pp.439-455.

[5] N.N. Prokhorov: Hot Cracking During Welding (Mashgiz, Moscow, 1952).

[6] A.A. Bochvar, N.N. Rykalin, N.N. Prokhorov, I.I. Novikov and B.A. Movchan: Welding Production Vol. 10 (1960), pp.5-7.

[7] N.N. Prokhorov: Welding Production Vol. 4 (1962), pp.1-8.

[8] M. Jonsson, L. Karlsson and L.E. Lindgren: Mechanical Behaviour of Materials IV, Pergamon Press, New York, (1984), pp.273-279.

[9] J.J. Dike, J.A. Brooks and M. Li: Mathematical Modelling of Weld Phenomena 4 (ed Cerjak), IOM Communications Ltd, London (1998), pp.199-222.

[10] Z. Feng: Welding in the World, 33 (1994), pp.340-347.

[11] T. Zacharia: Welding Journal, 73 (1994), pp.164-172.

[12] J.J. Dike, J.A. Brooks and J.S. Krafcik: Trends in Welding Research (ed Smartt HB et al), ASM Intern, (1996), pp.159-164.

[13] Z. Feng, T. Zaharia and S.A. David: Mathematical Modelling of Weld Phenomena 3 (ed Cerjak), (1996), pp.114-147.

[14] Z. Feng, T. Zaharia and S.A. David: Welding Journal, 76 (1997), pp.470-483.

[15] V.I. Makhnenko, E.A. Velikoivanenko, G.F. Rozynka, A.V. Musiyachenko, N.I. Pivtorak and P. Seiffarth: The Paton Welding Journal, 10 (1998), pp.57-65.

[16] S. Weise: Heißrißbildung beim Laserstrahlschweißen von Baustählen, BIAS-Verlag, Bremen, (1998).

[17] H. Herold, M. Streitenberger and A. Pchennikov: Mathematical Modelling of Weld Phenomena 5 (ed Cerjak), IOM Communications Ltd, London (2001), pp.783-792.

[18] M. Shibahara, H. Serizawa and H. Murakawa: Modelling of Casting, Welding and Advanced Solidification Processes IX (ed Sahm PR et al), Shaker-Verlag, Aachen (2000), pp.844-851.

[19] M. Shibahara, H. Serizawa and H. Murakawa: Mathematical Modelling of Weld Phenomena 5 (ed Cerjak), IOM Communications Ltd, London (2001), pp.253-267.

[20] H.W. Bergmann and R.M. Hilbinger: Mathematical Modelling of Weld Phenomena 4 (ed Cerjak), IOM Communications Ltd, London (1998), pp.658-668.

[21] R.M. Hilbinger, H.W. Bergmann, W. Köhler and F. Palm: Mathematical Modelling of Weld Phenomena 5 (ed Cerjak), IOM Communications Ltd, London (2001), pp.847-862.

[22] R.M. Hilbinger: Heißrissbildung beim Schweißen von Aluminium in Blechrandlage, Universitaet Bayreuth, Bayreuth (2000).

[23] W.S. Pellini: Strain theoryof hot tearing foundry (1952).

[24] V. Plochikhine, A. Prikhodovsky and H. -W. Zoch: Härterei-Technische Mitteilungen, 58 (2003), pp.357-362.

[25] V. Ploshikhin, A. Prikhodovsky, A. Ilin,C. Heimerdinger and F. Palm: Mathematical Modelling of Weld Phenomena 7 (ed Cerjak), IOM Communications Ltd, London in press.

[26] MSC Software: MARC-theory and user information, Palo Alto, CA, USA.

[27] N. Saunders and A.P. Miodownik: In: Pergamon Materials Series vol 1, Elsevier Science, Oxford, New York, Tokyo (1998).

[28] J.O. Andersson, T. Helander, L. Höglund, P. Shi and B. Sundman: Computational Tools For Materials Science, Calphad, 26 (2002), pp.273-312.

DOI: https://doi.org/10.1016/s0364-5916(02)00037-8

[29] N. Saunders: J. Japanese Inst. Light Metals, 51 (2001), p.141.

[30] K. Nakata and F. Matsuda: Welding International, 9 (1995), pp.706-716.

[31] B. Akesson and L. Karlsson: Welding Research International, 6 (1976), pp.35-52.

[32] V.G. Shumilin, V.A. Karkhin, M.I. Rakhman and K.M. Gatovsky: USSR Patent No 1109280, (1980).

[33] H. Herold, M. Streitenberger, A. Pchennikov and E. Makarov: Welding in the World, 43 (1999) pp.56-64.