Young’s Modulus of Polysilicon Thin Film Evaluated by Finite Element Analysis


Article Preview

To analyze the effect of the crystal orientations and the grain size on the Young's modulus of thin polysilicon microelements, two-dimensional finite element models in plain strain condition were developed using a Voronoi structure. The number of grains in a model of a 10 μm square area was changed from 23 to 1200. The grain size and the crystal orientation of the film were analyzed by means of an electron back-scattering diffraction pattern (EBSP) method. The average grain size of the front surface of the thin film was about 0.69 μm, which is almost equal to the grain size of the Voronoi model having 300 grains. From the results of EBSP analysis, the specimen had no oriented structure. Therefore, random crystal orientation was given to each grain of the FEM models. When the number of grains increased, the Young's modulus converged on about 171 GPa and its scatter caused by the different sets of the random orientation was reduced. The Young's modulus obtained by the FEM analysis was larger than the value obtained by the tensile tests.



Key Engineering Materials (Volumes 353-358)

Edited by:

Yu Zhou, Shan-Tung Tu and Xishan Xie




K. Tanaka et al., "Young’s Modulus of Polysilicon Thin Film Evaluated by Finite Element Analysis", Key Engineering Materials, Vols. 353-358, pp. 2227-2230, 2007

Online since:

September 2007




[1] S. Johansson, J. Å. Schweitz, L. Tenerz and J. Tirén: J. Appl. Phys., 63 (1988), p.4799.

[2] K. Komai, K. Minoshima, H. Tawara, S. Inoue and K. Sunako: Trans. Japan Soc. Mech. Eng., 60A (1994) p.52.

[3] K. Takashima and Y. Higo: ATEM'03, JSME-MMD, OS06W0421 (2003).

[4] S. Greek, F. Ericson, S. Johansson and J. Å. Schweitz: Thin Solid Films, 292 (1997), p.247.

[5] H. Ogawa, K. Suzuki, S. Kaneko, Y. Nakano, Y. Ishikawa and T. Kitahara: Proc. of IEEE Microelectromechanical Systems '97 Nagoya (1997), p.430.

[6] W. N. Sharpe, Jr., K. T. Turner and R. L. Edwards: Experimental Mechanics, 39-3(1999), p.210.

[7] K. Minoshima, K. TANAKA, R. Tomoida, H. Yokote and K. Komai: Proc. 2003 Annual Meeting of the JSME/MMD, 03-11 (2003), p.445.

[8] R.L. Mullen, R. Ballarini, Y. Yin and H. Heuer: Acta Mater., 45 (1997), p.2247.

[9] K. Serizawa. K. Tanaka, Y. Akiniwa and H. Kimachi: ATEM'03, JSME-MMD, OS06W0448 (2003).

[10] K. Shimizu and T. Torii: JSME International Journal Series A, 45-4 (2002), p.504.

[11] K. Matsumoto, H. Shii. A. Ichinose, H. Adachi, Y. Yoshida. S. Horii, M. Mukaida and K. Osamura: J. Japan Inst. Metals, 68-9 (2004), p.730.

[12] L.J. Gibson, M.F. Ashby: CELLULAR SOLIDS Structure & Properties (Pergamon Press ).

[13] J.L. Grenestedt and K. Tanaka: Scripta Materialia, 40(1999), p.71.

[14] J.J. Wortman and R.A. Evans: J. Appl. Phy., 36 (1965), p.153.

[15] S. M. Allameh, B. Gally, S. Brown, and W. O. Soboyejo: ASTM STP 1413(2001), pp.1411-180 Young's Modulus GPa Number of Grains n n=23 n=52 n=101 n=300 n=1200 Mean Value Fig. 6 Scatter of Young's modulus as a function of number of grains.

Fetching data from Crossref.
This may take some time to load.