Nanomechanical Properties of Tooth and Bone Revealed by Nanoindentation and AFM


Article Preview

In this paper, an overview on nanoindentation and its combination with AFM is presented with regard to current instrument technology and applications on dental and bony tissues. Nanoindentation has been a widely used technique to determine the mechanical properties such as nanohardness and Young’s modulus for nanostructured materials. Especially, atomic force microscopy (AFM) combined with nanoindentation, with the pit positions controlled accurately, become a powerful technique used to measure mechanical properties of materials on the nanoscale, and has been applied to the study of biological hard tissues, such as bone and tooth. Examples will be shown that significantly different nanohardness and modulus in the isolated domains within single enamel, the prisms, interprisms, the surrounding sheaths and the different parts of skeletal bone, could been distinguished, while such information was unable to be obtained by traditional methods of mechanical measurements.



Key Engineering Materials (Volumes 353-358)

Edited by:

Yu Zhou, Shan-Tung Tu and Xishan Xie




F. Z. Cui et al., "Nanomechanical Properties of Tooth and Bone Revealed by Nanoindentation and AFM", Key Engineering Materials, Vols. 353-358, pp. 2263-2266, 2007

Online since:

September 2007




[1] Currey, J.D.: J. Exp. Biol. Vol. 202 (1999), p.2495.

[2] Hengsberger, S., Enstroem, J., Peyrin, F.: J. Biomech. Vol. 36 (2003), p.1503.

[3] Silva, M.J., Brodt, M.D., Fan, Z.F.: J. Biomech. Vol. 37 (2004), p.1639.

[4] Turner, C.H., Takano, Y. & Hirano, T.: Bone Vol. 19 (1996), p.603.

[5] Hengsberger, S., Ammann, P., Legros, B.: Bone Vol. 36 (2005), p.134.

[6] Majumdar, S., Kothari, M., Augat, P.: Bone Vol. 22 (1998), p.445.

[7] Charles H. Turner, S.C.C.: J. Biomech. Vol. 23 (1990), p.549.

[8] Kabel, J., Odgaard, A., van Rietbergen, B.: Bone Vol. 24 (1999), p.115.

[9] Rho, J.Y., Zioupos, P., Currey, J.D.: Bone Vol. 25 (1999), p.295.

[10] van Eijden, T.M.G.J., van Ruijven: Calcified Tissue Int. Vol. 75 (2004), p.502.

[11] Ferguson, V.L., Ayers, R.A., Bateman, T.A.: Bone Vol. 33 (2003), p.387.

[12] Ge, J., Wang, X.M. & Cui, F.Z.: Mater. Sci. Eng. C-Bio. S. Vol. 26 (2006), p.710.

[13] Nakamura, H., Shim, J., Butz, F.: J. Biomed. Mater. Res. A Vol. 77A (2006), p.478.

[14] Klein, R.F., Vartanian, K.A., Skinner, L.D.: J. Bone Miner. Res. Vol. 15 (2000), p. S186.

[15] Wang, X.M., Cui, F.Z., Ge, J.: Biomaterials Vol. 23 (2002), p.4557.

[16] Ge, J., Cui, F.Z., Wang, X.M.: Biomaterials Vol. 26 (2005), p.3333.

[17] Kinney, J.H., Balooch, M., Marshall, S.J.: J. Dent. Res. Vol. 74 (1995), p.567.

[18] Habelitz, S., Marshall, S.J., Marshall, G.W.: J. Struct. Biol. Vol. 135 (2001), p.294.

[19] Cuy, J.L., Mann, A.B., Livi, K.J.: Arch. Oral Biol. Vol. 47 (2002), p.281.

[20] Jiang, H.D., Liu, X.Y., Lim, C.T.: Appl. Phys. Lett. Vol. 86 (2005), p.16.

[21] Oliver, W.C. & Pharr, G.M.: J. Mater. Res. Vol. 7 (1992), p.1546.

[22] Finke, M., Jandt, K.D. & Parker, D.M.: J. Colloid Interf. Sci. Vol. 232 (2000), p.156.

[23] Barbour, M.E., Parker, D.M., Allen, G.C.: Eur. J. Oral Sci. Vol. 111 (2003), p.428.

[24] Fong, H., White, S.N., Paine, M.L.: J. Bone Miner. Res. Vol. 18 (2003), p. (2052).