Temperature Effect on the Friction Behavior of NiTi Shape Memory Alloy


Article Preview

By using an atomic force microscopy, the friction behavior of a NiTi shape memory alloy is investigated under various temperatures in vacuum environment. Under wearless condition at low loads, the adhesion-dominated friction of NiTi is almost temperature independent. However, while scratch mark appears after friction at high loads, the plough-dominated friction force is found to decrease with the increaase in temperature. Based on a simple contact analysis, the temperature dependent friction behavior of NiTi at high loads may be mainly attributed to the thermoelastic phase transition in NiTi. While temperature increases from 26~100°C, the tensile phase transition stress of NiTi increases from 412~964 MPa, which induces ~27% magnitude decrease in the contact area between the diamond tip and NiTi. It further results in the decrease in the plough-dominated friction force on NiTi.



Key Engineering Materials (Volumes 353-358)

Edited by:

Yu Zhou, Shan-Tung Tu and Xishan Xie




L. Gong et al., "Temperature Effect on the Friction Behavior of NiTi Shape Memory Alloy", Key Engineering Materials, Vols. 353-358, pp. 780-783, 2007

Online since:

September 2007




[1] Y.Q. Fu, H.J. Du, W.M. Huang, S. Zhang and M. Hu: Sensor. Actuat. A Vol. 112 (2004), p.395.

[2] S.M. Spearing: Acta Mater. Vol. 48 (2000), p.179.

[3] Y. Shida, Y. Sugimoto: Wear Vol. 146 (1991), p.219.

[4] R. Liu, D. Y. Li: Mater. Sci. Technol. London Vol. 16 (2000), p.328.

[5] Y.J. Zhang, Y.T. Cheng and D.S. Grummon: Applied Physics Letters Vol. 88 (2006), p.131904.

[6] L.M. Qian, X.D. Xiao, Q.P. Sun and T.X. Yu: Appl. Phys. Lett. Vol. 84 (2004), p.1076.

[7] L.M. Qian, Z.R. Zhou and Q.P. Sun: Wear Vol. 259/1-6 (2005), p.309.

[8] L.M. Qian, Q.P. Sun and X.D. Xiao: Wear Vol. 260 (2006), p.509.

[9] H.Z. Ye, R. Liu, D. Y. Li and R.L. Eadie: Compos. Sci. Techn. Vol. 61 (2001) p.987.

[10] B. Bhushan: Modern Tribology Handbook, Volume One (CRC Press LLC, Florida, USA 2001).

[11] L. M. Qian, F. Tian and X.D. Xiao: Tribol. Lett. Vol. 15 (2003), p.169.

[12] Q. He, W.M. Huang, M.H. Hong, M.J. Wu, et al.: Smart Mater. Struct. Vol. 13 (2004), p.977.

[13] U.D. Schwarz, W. Allers, G. Gensterblum and R. Wiesendanger: Phys. Rev. B Vol. 52 (1995) p.14976.

[14] W.M. Huang, J.F. Su, M.H. Hong, B. Yang: Scripta Mater. Vol. 53 (2005), p.1055.

[15] W.Y. Ni, Y.T. Cheng, and D.S. Grummon: Surf. & Coat. Techn. Vol. 177-178 (2004), p.514.

Fetching data from Crossref.
This may take some time to load.