Effect of Hydroxyapatite and Zinc-Containing Hydroxyapatite on Osseous Repair of Critical Size Defect in the Rat Calvaria

Abstract:

Article Preview

Hydroxyapatite (HA), widely used as bone graft, can be modified by the incorporation of bivalent cations (Mg2+ and Zn2+) and its gradual release could favor the bone repair. The purpose of this research was to evaluate the effect of the HA and zinc-containing hydroxyapatite (Zn-HA) in the bone repair in rat calvaria in comparison to autogenous bone. Critical size defect in the calvaria was filled with the graft material and the samples were harvested at the 30, 90 and 180 days. The light microcopy observations showed the biocompatibility of the graft materials. In the Zn-HA group the area of neoformed bone was larger than in the HA group, but smaller than in the autograft. A fibrous connective tissue was more evident around HA granules. It could be conclude that the presence of zinc ions in HA crystal accelerated the osteogenesis and increased the area of newly formed bone in relation to HA.

Info:

Periodical:

Key Engineering Materials (Volumes 361-363)

Main Theme:

Edited by:

Guy Daculsi and Pierre Layrolle

Pages:

1273-1276

Citation:

M. Calasans-Maia et al., "Effect of Hydroxyapatite and Zinc-Containing Hydroxyapatite on Osseous Repair of Critical Size Defect in the Rat Calvaria", Key Engineering Materials, Vols. 361-363, pp. 1273-1276, 2008

Online since:

November 2007

Export:

Price:

$38.00

[1] M.B. Conz, J.M. Granjeiro, G.A. Soares. Physicochemical characterization of six commercial hydroxyapatites for medical-dental applications as bone graft. J Appl Oral Sci, 13(2): 136-140, (2005).

DOI: https://doi.org/10.1590/s1678-77572005000200008

[2] D.F. Williams. Definitions in biomaterials. Elsevier, New York, (1987).

[3] Y. Yamazaki et al. Synthesis of functionally graded MgCO3 apatite accelerating osteoblast adhesion. J. Biomed Mater Res, 62(1): 99-105, (2002).

[4] M. Yamaguchi, H. Oishi, Y. Suketa. Stimulatory effect of zinc on bone formation in tissue culture. Biochem Pharm, 36(22): 4007-4012, (1987).

DOI: https://doi.org/10.1016/0006-2952(87)90471-0

[5] A.M. Simao, M.M. Beloti, R.M. Cezarino, A.L. Rosa, J.M. Pizauro, P. Ciancaglini. Membranebound alkaline phosphatase from ectopic mineralization and rat bone marrow cell culture. Comp Biochem Physiol A Mol Integr Physiol, 146: 679-687, (2007).

DOI: https://doi.org/10.1016/j.cbpa.2006.05.008

[6] D. Chen, L.C. Waite, J.W.M. Pierce. In vitro effects of zinc on markers of bone formation. Biol Trace Elem Res, 68: 225-234, (1999).

DOI: https://doi.org/10.1007/bf02783905

[7] P. Ciancaglini, A.M. Simao, F.L. Camolezi, J.L. Millan, J.M. Pizauro. Contribution of matrix vesicles and alkaline phosphatase to ectopic bone formation. Braz J Med Biol Res. 39: 603-610, (2006).

DOI: https://doi.org/10.1590/s0100-879x2006000500006

[8] H.C. Anderson. Molecular biology of matrix vesicles. Clin Orthopaedics Rel Res, 314: 266-280, (1995).

[9] F.A. Leone, L.A. Rezende, P. Ciancaglini, J.M. Pizauro. Allosteric modulation of pyrophosphatase activity of rat osseous plate alkaline phosphatase by magnesium ions. Int J Biochem Cell Biol. 30: 89-97, (1998).

DOI: https://doi.org/10.1016/s1357-2725(97)00077-0

[10] S. Morais, N. Dias, J.P. Sousa, M.H. Fernandes, G.S. Carvalho. In vitro osteoblastic differentiation of human bone marrow cells in presence of metal ions. J Biomed Mater Res, 44: 176190, (1999).

DOI: https://doi.org/10.1002/(sici)1097-4636(199902)44:2<176::aid-jbm8>3.0.co;2-6

[11] X. Wu, N. Itoh, T. Taniguchi, J. Hirano, T. Nakanishi, K. Tanaka. Stimulation of differentiation in sodium-dependent vitamin c transporter overexpressing mc3t3-el osteoblasts. Biochem Biophys Res Comm, 317: 1159-1164, (2004).

DOI: https://doi.org/10.1016/j.bbrc.2004.03.158

[12] T.M. Litchfield, Y. Ishikawa, L.N.Y. Wu, R.E. Wuthier, G.R. Sauer. Effect of metal ions on calcifying growth plate cartilage chondrocytes. Calcif Tissue Int, 62: 341-349, (1998).

DOI: https://doi.org/10.1007/s002239900442

[13] H Yuan, Z Yang, J.D. de Bruijn, K. de Groot, X. Zhang. Material dependent bone induction by calcium phosphate ceramics: a 2. 5 year study in dogs. Biomaterials, 22: 2617-2623, (2001).

DOI: https://doi.org/10.1016/s0142-9612(00)00450-6

[14] T.J. Webster, C. Ergun, R.H. Doremus, R.W. Siegel, R. Bizios. Enhanced function of osteoblasts on nanophase ceramics. Biomaterials, 21: 1803-1810, (2000).

[15] M. Ikeuchi, A. Ito, Y. Dohi, H. Ohgushi, H. Shimaoka, K. Yonemasu, T. Tateishi. Osteogenic differentiation of cultured rat and human bone marrow cells on the surface of zinc-releasing calcium phosphate ceramics. J Biomed Mater Res, 67A: 1115-1122, (2003).

DOI: https://doi.org/10.1002/jbm.a.10041

[16] E. Fujii, M. Ohkubo, K. Tsuru, S. Hayakawa, A. Osaka, K. Kawabata, C. Bonhomme, F. Babonneau. Selective protein adsorption property and characterization of nano-crystalline zinccontaining hydroxyapatite. Acta Materialia, 2: 69-74, (2006).

DOI: https://doi.org/10.1016/j.actbio.2005.09.002

[17] I.R. de Lima, A. M. Costa, I. N. Bastos, J. M. Granjeiro, G.A. Soares. Development and characterization of 5% mol Zn bioceramic in granular form. Mater Res, 9(4): 399-403, (2006).

DOI: https://doi.org/10.1590/s1516-14392006000400010

[18] H. Storrie, S.I. Stupp. Cellular response to zinc-containing organoapatite: an in vitro study of proliferation, alkaline phosphatase activity and biomineralization. Biomaterials, 26(27): 5492-5499, (2005).

DOI: https://doi.org/10.1016/j.biomaterials.2005.01.043

[19] H. Kawamura, A. Ito, T. Muramatsu, S. Miyakawa, N. Ochiai, T. Tateishi. Long-term implantation of zinc-releasing calcium phosphate ceramics in rabbit femora. J Biomed Mater Res A. 65(4): 468-474, (2003).

DOI: https://doi.org/10.1002/jbm.a.10524

Fetching data from Crossref.
This may take some time to load.