Double-Layer Bioactive Glass Coatings Obtained by Pulsed Laser Deposition


Article Preview

Pulsed laser deposition was used to obtain functionally graded bioactive glass coatings on titanium substrates. An UV KrF* (λ=248 nm, τ>7 ns) excimer laser was used for the multi-pulse irradiation of the targets. The depositions were performed in oxygen while keeping substrate temperature at 400°C. We used sintered glass targets in the system SiO2-Na2O-K2O-CaO-MgOP2O5 that differed in SiO2 content, which was either 57 wt.% (6P57) or 61 wt.% (6P61). A glass 6P61 was used as the first layer in direct contact with the metallic substrate, while the outer bioactive layer was made of glass 6P57. Both the bioactive coatings and the bulk glasses were analyzed by Fourier transform infrared spectrometry (FTIR), grazing incidence X-ray diffraction (GIXRD), and scanning electron microscopy (SEM). The FTIR spectra of the glass powders and glass coatings showed the main vibration modes of the Si-O-Si groups. GIXRD analysis confirmed that the glass coatings had an amorphous structure. The SEM micrographs of the glass coatings showed the films to consist of droplets with diameters ranging from 0.2 to 5 μm. SEM was used to determine the rate of apatite formation on the coating when exposed to simulated body fluid (SBF) solution for 7 days. We demonstrated that pulsed laser deposition leads to good glass-metal adhesion on the substrate and well attached bioactive particles on the surface. We consider therefore this method appropriate for forming implants that can develop an apatite layer after immersion in SBF.



Key Engineering Materials (Volumes 361-363)

Main Theme:

Edited by:

Guy Daculsi and Pierre Layrolle




D. Veljković et al., "Double-Layer Bioactive Glass Coatings Obtained by Pulsed Laser Deposition", Key Engineering Materials, Vols. 361-363, pp. 277-280, 2008

Online since:

November 2007




[1] P. González, J. Serra, S. Liste, S. Chiussi, B. León, M. Pérez-Amor: Vacuum Vol. 67 (2002), p.647.

[2] L.L. Hench and Ö. Anderson, in: An Introduction to Bioceramics, edited by L.L. Hench, J. Wilson (World Scientific, Singapore, 1993).

[3] J. Serra, P. González, S. Liste, C. Serra, S. Chiussi, B. León, M. Pérez-Amor, H.O. Ylänen and M. Hupa: J. Non-Cryst. Solids Vol. 332 (2003), p.20.


[4] S. Lopez-Esteban, E. Saiz, S. Fujino, T. Oku, K. Suganuma and A.P. Tomsia: J. Eur. Ceram. Soc. Vol. 23 (2003), p.2921.

[5] S. Foppiano , S.J. Marshall , E. Saiz , A.P. Tomsia and G.W. Marshall: Acta Biomater Vol. 2 (2006), p.133.

[6] S. Liste, J. Serra, P. González, J.P. Borrajo, S. Chiussi, B. León and M. Pérez-Amor: Thin Solid Films Vol. 453 -454 (2004), p.224.


[7] C.X. Wang, Z.Q. Chen and M. Wang: J. Mater. Sci. - Mater. Med. Vol. 13 (2002), p.247.

[8] J.H. Chern Lin, K.S. Chen and C.P. Ju: Mater. Chem. Phys. Vol. 41 (1995), p.2820.

[9] A. Pazo, E. Saiz and A.P. Tomsia: Acta mater. Vol. 46 (1998), p.2551.

[10] D. Stojanovic, B. Jokic, Dj. Veljovic, R. Petrovic, P.S. Uskokovic and Dj, Janackovic: : J. Eur. Ceram. Soc. Vol. 27 (2007), p.1595.


[11] E. Gyorgy, S. Grigorescu, G. Socol, I.N. Mihailescu, A. Figueras, C. Ducu, Dj. Janackovic, A. Dindune, Z. Kanepe, E. Palcevskis, E.L. Zdrentu and S.M. Petrescu: Appl Surf Sci (2007) doi: 10. 1016/j. apsusc. 2007. 02. 146.


[12] D. Tanaskovic, B. Jokic, G. Socol, A. Popescu, I.N. Mihailescu, R. Petrovic and Dj. Janackovic: submitted to Applied Surface Science (2007).


[13] S. Liste, P. González, J. Serra, J.P. Borrajo, S. Chiussi, B. León, M. Pérez-Amor, J. García López, F.J. Ferrer, Y. Morilla and M.A. Respaldiza: Thin Solid Films Vol. 453-454 (2004), p.219.


[14] Q. Bao, C. Chena, D. Wang, T. Lei, and J. Liu: Mater. Sci. Eng., A Vol. 429 (2006), p.25.

[15] V. Nelea, C. Morosanu, M. Iliescu and I.N. Mihailescu: Appl. Surf. Sci. Vol. 228 (2004), p.346.

[16] S. Lopez-Esteban, E. Saiz, S. Fujino, T. Oku, K. Suganuma and A.P. Tomsia: J. Eur. Ceram. Soc. Vol. 23 (2003), p.2921.