Investigation to the Cross Microstructure of Hydroxyapatite Sheets of a Cannon Bone


Article Preview

Bone possesses excellent mechanical properties, which are closely related to its favorable microstructures optimized by nature through many centuries. In this work, a scanning electron microscope (SEM) was used to observe the microstructures of a cannon bone. It showed that the bone is a kind of bioceramic composite consisting of hydroxyapatite layers and collagen protein matrix. The hydroxyapatite layers are composed of long and thin hydroxyapatite sheets. The hydroxyapatite sheets in different hydroxyapatite layers distribute along different orientations, which composes a kind of cross microstructure. The maximum pullout force of the cross microstructure was investigated and compared with that of the 0° microstructure with their representative models. The result indicated that the maximum pullout force of the cross microstructure is markedly larger than that of the 0° microstructure.



Key Engineering Materials (Volumes 361-363)

Main Theme:

Edited by:

Guy Daculsi and Pierre Layrolle




B. Chen et al., "Investigation to the Cross Microstructure of Hydroxyapatite Sheets of a Cannon Bone", Key Engineering Materials, Vols. 361-363, pp. 479-482, 2008

Online since:

November 2007




[1] D. R. Katti, K. S. Katti, J. M. Sopp and M. Sarikaya: Comp. Theo. Poly. Sci. Vol. 11 (2001), p.396.

[2] M. Sarikaya, K. E. Gunnison, M. Yasrebi, D. L. Milius and I. A. Akay: Proc. Amer. Comp. (Technomic Publishing Co. Inc, Lancaster, USA, 1989), p.176.

[3] J. Y. Rho, P. Zioupos, J. D. Currey and G. M. Pharr: J. Biomechanics Vol. 35 (2002), p.189.

[4] J. D. Currey: J. Biomechanics Vol. 36 (2003), p.1487.

[5] M. Weber, T. Schoerl, P. Roschger, K. Klaushofer and P. Fratzl: Struc. Mech. Behavior Biological Mater. Vol. 847 (2005), p.79.

[6] M. J. Glimcher, Disorders of bone and mineral metabolism (Raven Press, New York, USA, 1992), p.265.

[7] X. Su, K. Sun, F. Z. Cui and W. J. Landis: Bone Vol. 32 (2003), p.150.

[8] P. Fratzl, M. Groschner, G. Vogl, H. Plenk, J. Eschberger, N. Z. Fratzl and K. Koller: J. Bone Miner Res. Vol. 7 (1992), p.329.

DOI: 10.1002/jbmr.5650070313

[9] S. Lees and K. Prostak: Connect Tissue Res Vol. 18 (1988), p.41.

[10] P. Fratzl, H. S. Gupta, E. P. Paschalis and P. Roschger: J. Mater. Chem. Vol. 14 (2006), p.2115.

[11] A. Woesz, M. Rumpler, J. Stampfl, F. Varga, Z. N. Fratzl, P. Roschger, K. Klaushofer and P. Fratzl: Mater. Sci. Eng. C Vol. 25 (2005), p.181.

DOI: 10.1016/j.msec.2005.01.014

[12] P. Zioupos and J. D. Currey: Bone Vol. 22 (1998), p.57.




[1] 1.

[1] 3.

[1] 5.

[1] 7.

[1] 9.

[2] 1.

5 0. 7 0. 9 1. 1 1. 3 1. 5 AR PR Φ =20 Φ =30 Φ =40 Fig. 5. Ratio of pullout force vs. Ratio of sheet size.

8 1.

[1] 2.

[1] 4.

[1] 6.

[1] 8 2.

[2] 2.

[2] 4.

[2] 6.

8 20. 8 40. 8 � PR AR=0. 8 AR=1. 0 AR=1. 2 Fig. 6. Maximum pullout force vs. inclined angle.

Fetching data from Crossref.
This may take some time to load.