Ti Alloy Surface Modifications and Coatings: An Update


Article Preview

Since 1952 when Branemark first reported osseointegration of titanium (Ti) with bone, many academic and industrial research activities have endeavored to improve the efficacy of Ti or Ti alloy (Ti6Al4V) by modifying the chemistry, topography and design of the implant surface. Strong bonding between implant and host tissue minimize the micromovements that promote fibrous tissue formation at the implant interface that may lead to implant failure. Surface design include lateral holes perpendicular to the implant axis, grooves, variations of spacings between ridges, etc. Physico-mechanical means of surface modification is by grit-blasting with various abrasives (alumina, silica, apatitic abrasive), laser ablation, spark discharge, etc. Chemical modifications include: acid etching, treatment with alkali, treatment with fluoride, coating with titanium or with calcium phosphate (by plasma spray, electromagnetic sputtering, electrochemical deposition). A review of studies on Ti or Ti alloy implants with different surfaces showed the following methods to enhance osseointegration and greater bone formation: (1) grit-blasting with apatitic abrasive; (2) acid-etching with mixed acids; (3) adjusting plasma-spray parameter to get a higher HA/ACP ratio in the coating; (4) employing electrochemical deposition (with pulse modulation) or precipitation to obtain thin coating with homogeneous composition; and/or (5) Ftreatment.



Key Engineering Materials (Volumes 361-363)

Main Theme:

Edited by:

Guy Daculsi and Pierre Layrolle




J. P. LeGeros et al., "Ti Alloy Surface Modifications and Coatings: An Update", Key Engineering Materials, Vols. 361-363, pp. 741-744, 2008

Online since:

November 2007




[1] Branemark PI, Hansson BO, Adell R et al (1977). Scand J Plast Reconstr Surg 11: S16.

[2] Schwartz Z, Martin JY, Dean DD, et al (1996). J Biomed Mater Res 30: 145-156.

[3] Buser B, Schenk RK, Steinman S, Fiorellini JP, et a (1991). J Biomed Mater Res 25: 889- 902.

[4] Geesink RG, Hoefnagels NH (1995). J Bone Jt Surg Br 77: 534-547.

[5] Golec TS, Krauser JT (1992). Dental Clinics of North America 36: 39-65.

[6] Salgado T, LeGeros JP, Wang JL (1998). Bioceramics 11: 683-686.

[7] LeGeros JP, Daculsi G, LeGeros RZ (1996). Proc 25th Annual International Soc Biomaterials.

[8] Ishikawa K, Miyamoto Y, Nagayama M, Asaoka K (1997). J Biomed Mater Res (Appl Biomater) 38: 129-134.

[9] Mueller W-D, Gross U, Fritz T, et al (2003). Clin Oral Impl Res 14: 349-356.

[10] LeGeros RZ, LeGeros JP, Kim Y, Kijkowska R et al (1995). Biocer Mat Appl 48: 173-189.

[11] LeGeros RZ, Kim YE, Kijkowska R, et al (1998). Bioceramics 11 : 181-184.

[12] Lin S, LeGeros RZ, LeGeros JP (2003). J Biomed Mater Res 66A: 819-828. patent.

DOI: 10.1002/jbm.a.10072

[13] Rohanizadeh R, Al-Sadeq M, LeGeros RZ (2004). J Biomed Mater Res 71A: 343-352.

[14] Park J, LeGeros RZ, LeGeros JP (2005). J Dent Res 84 (Spec Iss A): abstract no. 1917. (Provisional patent, August 2005).

[15] Alsilmi AY, LeGeros JP, LeGeros RZ (2003). J Dent Res 82 (Spec Iss B): abstract no. 2112. (Provisional patent, August 2005).

[16] Nakagawa M, Zhang L, Udoh K Matsuya S, Ishikawa K (in press). J Mater Sci: Mater Med.

[17] Nishio K, Neo M, Akyama H, et al (2000). J Biomed Mater Res 52: 652-661.

[18] Rohanizadeh R, LeGeros RZ, Harsono M, Benavid A (2005). J Biomed Mater Res 72A: 428- 438. Provisional patent, September 2004).

[19] Ellingsen JE (1995). J Mat Science Mat Medicine 6: 749-753.

[20] Wergedahl JE< Lau KHW, Baylink DJ (1988). Clin Orhop Rel Res 233: 274-282.

[21] Inoue M, LeGeros RZ, Inoue M, et al (2004). J Biomed Mater Res 70A: 585-593.

Fetching data from Crossref.
This may take some time to load.