Solid State MAS-NMR and FTIR Study of Barium Containing Alumino-Silicate Glasses

Abstract:

Article Preview

The glass based on a 1.5SiO2-Al2O3-0.5P2O5-CaO-0.67CaF2 composition was produced and substituted gradually by barium. The structure of the glasses was studied by multinuclear Magic Angle Spinning Nuclear Magnetic Resonance (MAS-NMR) and Fourier Transform Infrared Spectroscopy (FTIR). It was indicated by 29Si and 31P MAS-NMR spectra that silicon was present as Q4 (4Al) and Q3 (3Al) species and phosphorus was in a Q1 pyrophosphate environment. 29Al MAS-NMR spectra showed that four fold coordinated aluminum Al (IV) was the dominant species with a second peak assigned to octahedral aluminum Al (VI). The 19F spectra suggested that the barium addition caused the formation of Al-F-Ba(n) and F-Ba(n) species. Furthermore, a distribution of silicate network including Si-O-Si stretching (Q4 and Q3) and Si-O-[NBO] (Q3) per SiO4 was reflected by the FTIR study.

Info:

Periodical:

Key Engineering Materials (Volumes 361-363)

Main Theme:

Edited by:

Guy Daculsi and Pierre Layrolle

Pages:

825-828

DOI:

10.4028/www.scientific.net/KEM.361-363.825

Citation:

F. Wang et al., "Solid State MAS-NMR and FTIR Study of Barium Containing Alumino-Silicate Glasses", Key Engineering Materials, Vols. 361-363, pp. 825-828, 2008

Online since:

November 2007

Export:

Price:

$35.00

[1] S. Likitvanichkul, W.C. Lacourse: J. of Mater Sci. Vol. 33 (1998), p.5901.

[2] A. Stamboulis, R G. Hill, R. V. Law: J. Non-Cryst. Solids. Vol. 351 (2005), p.3289.

[3] A. Clifford, R.G. Hill, A. Rafferty, etal.: J. Mater. Sci. - Mater. Med. Vol. 12 (2001), p.461.

[4] N.J. Clayden , S. Esposito, A. Aronne, etal.: J. Non-Cryst. Solids. Vol. 258 (1999), p.11.

[5] S. A. MacDonald , C. R. Schardt, D. J. Masiello, etal.: J. Non-Cryst. Solids. Vol. 275 (2000), p.72.

[6] J. Serra , P. Gonzalez, S. Liste, etal.: J. Non-Cryst. Solids. Vol. 332 (2003), p.20.

[7] A. R. Chowdhuri, Dong-Un Jin, J. Rosado, etal.: Phys. Rev. B. Vol. 67 (2003), pp.245305-1.

[8] S. Agathopoulos, D.U. Tulyaganov, J.M.G. Ventura, etal.: J. Non-Cryst. Solids. Vol. 352 (2006), p.322.

[9] C. Huang, E.C. Behrman: J. Non-Cryst. Solids. Vol. 128 (1991), p.310.

[10] G Engelhardt, M Noftz, K Forkel, etal.: Phys. Chem. Glasses. Vol. 26 (1985), p.157.

[11] J. F. Stebbins, S. Kroeker, S. K. Lee, etal.: J. Non-Cryst. Solids. Vol. 275 (2000), p.1.

[12] M. Schmőcker, H. Schneider, K.J.D. Mackenzie, etal.: J. Eur. Ceram. Soc. Vol. 19 (1999), p.99.

[13] P.F. McMillan, W. T. Petuskey, B. Coté, etal.: J. Non-Cryst. Solids. Vol. 195 (1996), p.261.

[14] R. J. Kirkpatrick, R. K. Brow: Solid State Nucl. Magn. Reson. Vol. 5 (1995), p.9.

[15] A. Stamboulis, R. V. Law, R. G. Hill: Biomaterials. Vol. 25 (2004), p.3907.

[16] S. Matsuya, A. Stamboulis, R.G. Hill, etal.: J. Non-Cryst. Solids. Vol. 353 (2007), p.237.

In order to see related information, you need to Login.