Highly Efficient and Unusual Structure White Organic Light-Emitting Devices Based on Phosphorescence Sensitized 5,6,11,12-Tetraphenylnaphthacene


Article Preview

Highly efficient and unusual structures white organic light-emitting devices were fabricated based on phosphorescence sensitized 5,6,11,12-tetraphenylnaphthacene. The device structure was ITO / NPB (30 nm)/CBP: 10% DPVBi (10 nm)/CBP (5 nm) /CBP:x% Ir(ppy)3 : y% rubrene (20 nm)/ CBP (5 nm)/ CBP: 10% DPVBi (10 nm)/BCP (10 nm)/ Alq3 (30 nm)/LiF(0.5 nm)/Al, where NPB is N,N '-bis- (1-naphthyl)- N,N ' –diphenyl -1, 1 '- biphenyl-4,4 '-diamine as a hole transporting layer, CBP 4,4,N,N’-dicarbazolebiphenyl as host,DPVBi is 4,4 '-bis(2,2 -diphenyl vinyl)-1,1 '-biphenyl as blue fluorescent dye,Rubrene is 5,6,11,12,-tetraphenylnaphthacene as fluorescent dye,Ir(ppy)3 is factris (2-phenylpyridine) iridium as phosphorescent sensitizer .BCP is 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline as hole-blocking layer, and Alq3 is tris(8- hydroxyquinoline) aluminum as an electron-transporting layer. In this device, phosphorescent emissive layer was sandwiched between two blue fluorescent doped ones. This architecture allowed for resonant energy transfer from both the host singlet and triplet energy levels that minimized exchange energy losses. Thus, a WOLED with a maximum luminous efficiency of 11.63 cd/A, a maximum power efficiency of 7.37 lm/W, a maximum luminance of 31770cd/m2, and Commission Internationale de L’Eclairage coordinates of ( was achieved.



Key Engineering Materials (Volumes 364-366)

Edited by:

Guo Fan JIN, Wing Bun LEE, Chi Fai CHEUNG and Suet TO




W. L. Jiang et al., "Highly Efficient and Unusual Structure White Organic Light-Emitting Devices Based on Phosphorescence Sensitized 5,6,11,12-Tetraphenylnaphthacene", Key Engineering Materials, Vols. 364-366, pp. 1095-1099, 2008

Online since:

December 2007




[1] J. Kido, M. Kimura and K. Nagai: Science 267 (1995) 1332.

[2] Shizuo Tokito a, *, Toshimitsu Tsuzuki a, Fumio Sato a, Toshiki Iijima b. Current Applied Physics 5 (2005) 331-336.

DOI: 10.1016/j.cap.2003.11.094

[3] By Brian W. D'Andrade and Stephen R. Forrest, Adv. Mater, 2004, 16: 1589.

[4] Gangtie Lei,Liduo Wang, and Yong Qiu, Appl. Phys. Lett., 2004, 85:, 5403-5405.

DOI: 10.1063/1.1827326

[5] V. Adamovich,J. Brooks,A. Tamayo A.M. Alexander P.I. Djurovich M.E. Thompson,C. Adachi,B. W . D'Andrade S.R. Forrest, NewJ, Chem. 2002, 26, 1171.

[6] B. D'Andrade,J. Brooks,V. Adamovich M.E. Thompson S.R. Forrest, Adv. Mater2002, 14, 1032.

[7] M. A. Baldo, M. E. Thompson, and S. R. Forrest, Nature (London) 403, 750 (2000).

[8] B. W. D'Andrade, M. A. Baldo, C. Adachi, J. Brooks, M. E. Thompson, and S. R. Forrest, Appl. Phys. Lett. 79, 1045 (2001).

[9] G. F. He, S. C. Chang, F. C. Chen, Y. F. Li, and Y. Yang, Appl. Phys. Lett. 81, 1509 (2002). ).

[10] Y. F. Zhang, G. Cheng, Y. Zhao, J. Y. Hou, and S. Y. Liu, Appl. Phys. Lett. 86, 011112 (2005).

[11] Y. R. Sun, N. C. Giebink, H. Kanno, B. Ma, M. E. Thompson, and S. R. Forrest, Nature (London) 440, 908 (2006).

[12] B. W. D'Andrade, M. E. Thompson, and S. R. Forrest, Adv. Mater. (Weinheim, Ger. )14, 147 (2002).

Fetching data from Crossref.
This may take some time to load.