Grain Size Effect in Sheet Metal Microforming Simulation Adopting Strain Gradient Concept

Abstract:

Article Preview

A strain gradient dependent crystal plasticity approach is adopted to model the size effect in the microforming process of sheet metal. To take into account the grain size effect in the simulation, the total slip resistance in each active system was assumed to be due to a mixed population of forest obstacles arising from both statistically stored and geometrically necessary dislocations. The non-local crystal plasticity has been established by directly incorporating the above slip resistance into the conventional rate-dependent crystal plasticity and implemented into the Abaqus/Standard FE platform by developing the user subroutine UMAT. The formulation has been recapitulated and followed by presentation of the numerical examples employing both the local and non-local formulation. The comparison of the counterpart simulation results reveals the grain size effect in the microforming process and demonstrates the availability of the code developed.

Info:

Periodical:

Key Engineering Materials (Volumes 364-366)

Edited by:

Guo Fan JIN, Wing Bun LEE, Chi Fai CHEUNG and Suet TO

Pages:

1285-1291

Citation:

W. B. Lee et al., "Grain Size Effect in Sheet Metal Microforming Simulation Adopting Strain Gradient Concept", Key Engineering Materials, Vols. 364-366, pp. 1285-1291, 2008

Online since:

December 2007

Export:

Price:

$38.00

[1] Acharya, A., Bassani J.L., Lattice incompatibility and a gradient theory of crystal plasticity, Journal of the Mechanics and Physics of Solids , 48(8), 1565-1595, (2000).

DOI: https://doi.org/10.1016/s0022-5096(99)00075-7

[2] Acharya, A., Beaudoin, A. J., Grain-size effect in viscoplastic polycrystals at moderate strains, Journal of the Mechanics and Physics of Solids, 48(10), 2213-2230, (2000).

DOI: https://doi.org/10.1016/s0022-5096(00)00013-2

[3] Arsenlis, A., Parks, D.M., Crystallographic aspects of geometrically-necessary and statisticallystored dislocation density, Acta Materialia, 47(5), 1597-1611, (1999).

DOI: https://doi.org/10.1016/s1359-6454(99)00020-8

[4] Asaro, R. J., Needleman, A., Texture development and strain hardening in rate dependent polycrystals., Acta Metallurgica et Materialia 33(2), 923-953, (1985).

DOI: https://doi.org/10.1016/0001-6160(85)90188-9

[5] Busso, E. P., Meissonnier F. T. and O'Dowd, N. P., Gradient-dependent deformation of twophase single crystal, Journal of the Mechanics and Physics of Solids 48, 2333-2361, (2000).

[6] Choi, Y. S., Parthasarathy, T.A., Dimiduk, D.M. Uchic, M.D. Numerical study of the flow responses and the geometric constraint effects in Ni-base two-phase single crystals using strain gradient plasticity, Materials Science and Engineering A397, 69-83, (2005).

DOI: https://doi.org/10.1016/j.msea.2005.01.057

[7] Dai,H., Parks D.M., Geometrically-necessary Dislocation Density in Continuum Crystal Plasticity Theory and FEM Implementation and Applications, MIT PhD Dissertation, (1997).

[8] Evers L.P., Parks D.M., Brekelmans W.A.M., Geers M.G.D., Crystal plasticity model with enhanced hardening by geometrically necessary dislocation accumulation, Journal of the Mechanics and Physics of Solids 50, 2403-2424, (2002).

DOI: https://doi.org/10.1016/s0022-5096(02)00032-7

[9] Fleck N.A., Hutchinson J.W., A phenomenological theory for strain gradient effects in plasticity, Journal of the Mechanics and Physics of Solids 41(12), 1825-1857, (1993).

DOI: https://doi.org/10.1016/0022-5096(93)90072-n

[10] Fleck N.A., Muller G.M., Ashby,M. F., Hutchinson, J.W.,. Strain gradient plasticity: theory and experiments. Acta Metallurgica et Materialia 42(2), 475-487, (1994).

DOI: https://doi.org/10.1016/0956-7151(94)90502-9

[11] Fleck N.A., Hutchinson J.W., Strain gradient plasticity, In: Hutchinson, J.W., Wu,T.Y. (Eds. ), Advances in Applied Mechanics, Vol. 33. Academic Press, New York, pp.295-361, (1997).

DOI: https://doi.org/10.1016/s0065-2156(08)70388-0

[12] Fleck N.A., Hutchinson J.W., A reformulation of strain gradient plasticity, Journal of the Mechanics and Physics of Solids, 49(10), 2245-2271, (2001).

DOI: https://doi.org/10.1016/s0022-5096(01)00049-7

[13] Gao,H., Huang,Y., Nix W.D., Modeling plasticity at the micro-meter scale Naturwissenschaften 86, 507-515, 1999a.

[14] Gao,H., Huang,Y., Nix W.D., Hutchinson J.W., Mechanism-based strain gradient plasticityI. Theory. Journal of the Mechanics and Physics of Solids, 47(6), 1239-1263, 1999b.

[15] Huang,Y., Gao,H., Nix W.D., Hutchinson J.W., Mechanism-based strain gradient plasticity- II. Analysis, Journal of the Mechanics and Physics of Solids, 48(1), 99-128, 2000a.

DOI: https://doi.org/10.1016/s0022-5096(99)00022-8

[16] Huang,Y., Xue,Z., Gao,H., Nix W.D., Xia Z.C., A study of micro indentation hardness tests by mechanism-based strain gradient plasticity. Journal of Materials Research 15(8), p.1786, 2000b.

[17] Hutchinson, J. W., Bounds and self-consistent estimates for creep of polycrystalline materials, Proc. R. Soc. Lond., A348, 101-127, (1976).

[18] Kalidindi, S.R., Bronkhorst, C. A., Anand, L., Crystallographic texture evolution in bulk deformation processing of FCC metals, J. Mech. Phys. Solids 40, 537-569, (1992).

DOI: https://doi.org/10.1016/0022-5096(92)80003-9

[19] Mindlin, R.D., Micro-structure in linear elasticity, Archive Rational Mechanics Analysis 16, 51-78, (1964).

[20] Meissonier, F. T., Busso, E. P. and O'Dowd, N. P., Finite element implementation of a generalized non-local rate-dependent crystallographic formulation for finite strains, International Journal of Plasticity 17, 601-640, (2001).

DOI: https://doi.org/10.1016/s0749-6419(00)00064-4

[21] Mindlin R.D., Second gradient of strain and surface tension in linear elasticity, International Journal of Solids and Structures 1, 417-438, (1965).

DOI: https://doi.org/10.1016/0020-7683(65)90006-5

[22] Nye,J. F., Some geometrical relations in dislocated crystals, Acta Metallurgica et Materialia1, 153-162, (1953).

DOI: https://doi.org/10.1016/0001-6160(53)90054-6

[23] Shu J.Y., Fleck N.A., Strain gradient crystal plasticity: size-dependent deformation of bicrystals. Journal of the Mechanics and Physics of Solids, 47(2), 297-324, (1999).

DOI: https://doi.org/10.1016/s0022-5096(98)00081-7

[24] Siddiq,A., Schmauder, S., Huang,Y., Fracture of bicrystal metal/ceramic interfaces: A study via the mechanism-based strain gradient crystal plasticity theory, Int. J. of Plasticity, 23, p.665.

DOI: https://doi.org/10.1016/j.ijplas.2006.08.007

[25] Zbib H.M., Aifantis E.C., 1988, On the localization and post localization behavior of plastic deforma-tion, PartI, On the initiation of shear bands; PartII, On the evolution and thickness of shear bands; PartIII. On the structure and velocity of Portevin-Le Chatelier bands, Res Mechanica 23(2-3), 261-277, 279-292, 293-305.

DOI: https://doi.org/10.1007/978-94-011-3644-0_23

[26] Zhang, K. S., Microscopic heterogeneity and macroscopic mechanical behavior of a polycrystalline materials, Acta Mechanica Sinica, 36(6), 714-722, 2004(in Chinese).

Fetching data from Crossref.
This may take some time to load.