Precision Machining of Silicon Carbide with Diamond Micro Tool Array (DMTA)

Abstract:

Article Preview

An advanced conditioning technique was developed to precisely and effectively condition the nickel electroplated mono-layer coarse-grained diamond grinding wheel of 46m and 91m grain size with an aim to fabricate Diamond Micro Tool Arrays (DMTA), to meet the high demands of form accuracy, surface quality and low subsurface damage in ductile machining of silicon carbide (SiC). The precision machining experiments on SiC were carried out on a precision grinder to determine the applicability of these fabricated diamond micro tool array (DMTA). The experimental result indicates that the newly developed DMTA is applicable and feasible to realize ductile machining on SiC with high efficiency and low diamond tool wear rate, which shows a good prospect to apply this new concept diamond tool type in precision machining of SiC, as well as the other brittle and hard-to-machine materials.

Info:

Periodical:

Key Engineering Materials (Volumes 364-366)

Edited by:

Guo Fan JIN, Wing Bun LEE, Chi Fai CHEUNG and Suet TO

Pages:

321-326

DOI:

10.4028/www.scientific.net/KEM.364-366.321

Citation:

Q. L. Zhao et al., "Precision Machining of Silicon Carbide with Diamond Micro Tool Array (DMTA)", Key Engineering Materials, Vols. 364-366, pp. 321-326, 2008

Online since:

December 2007

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.