Influence of Varying the Powder Loading Content on the Homogeneity and Properties of Extruded PZT-Fibers


Article Preview

In this study PZT-green fibres containing 50, 54 and 58 vol.% PZT powder were extruded. The influences on the mixing torque, the apparent shear rate and the extrudability were investigated and a theoretical maximum powder loading content was calculated using a model introduced by Frankel and Acrivos. The influence of powder loading content on the microstructure (porosity and grain size), the phase composition and on the final ferroelectric properties of sintered PZT fibres was investigated. The measurements revealed that the production of PZT fibres with homogeneous properties requires a minimum powder loading content of 58 vol.% PZT powder.



Key Engineering Materials (Volumes 368-372)

Edited by:

Wei Pan and Jianghong Gong




J. Heiber et al., "Influence of Varying the Powder Loading Content on the Homogeneity and Properties of Extruded PZT-Fibers", Key Engineering Materials, Vols. 368-372, pp. 11-14, 2008

Online since:

February 2008




[1] R.B. Cass: Cer. Bull. Vol. 70 (1991), p.424.

[2] G. Helke, D. Vorbach, F. -G. Niemz, et al.: Adaptronic Congress (2001), p.1.

[3] U. Selvaraj, A. V. Prasadarao, S. Komarneni, et al.: J. Mater. Res. Vol. 7 (1992), p.992.

[4] H. B. Strock, M. R. Pascucci, M. V. Parish, et al.: SPIE Conf. Proc. Vol. 3675 (1999), p.22.

[5] X. Kornmann, Ch. Huber: J. Eur. Ceram. Soc. Vol. 24 (2004), pp. (1987).

[6] D.R. Biswas: J. Am. Ceram. Soc. Vol. 61 (1978), p.461.

[7] E. Roncari, C. Galassi, F. Craciun, et al.: J. Eur. Ceram. Soc. Vol. 21 (2001), p.409.

[8] P. Löbmann, U. Lange, W. Glaubitt, et al.: Key Eng. Mat. Vol. 224-226 (2002), p.613.

[9] J. -F. Li, K. Takagi, M. Ono, et al.: J. Am. Ceram. Soc. Vol. 86 (2003), p.1094.

[10] S. T. Paul Lin, R. M. German:J. Mater. Sci. Vol. 29 (1994), p.5367.

[11] A.V. Shenoy: Rheology of Filled Polymer Systems (Kluwer Academic Publishers, Netherlands 1999).

[12] N. A. Frankel, A. Acrivos: Chem. Eng. Sci. Vol. 22 (1967), p.847.

[13] J. Halloran, J. Hodge, D. Chandler, et al.: J. Am. Ceram. Soc. Vol. 75 (1992), p.903.

[14] D. Popovich, J. Lombardi: Ceram. Eng. Sci. Proc. Vol. 18 (1997), p.65.

[15] J. J. Biernacki, V. Venkateswaran, M. Andrejcak: Ceram. Eng. Sci. Proc. Vol. 18 (1997), p.73.

[16] M. Wegmann, B. Gut, K. Berroth: CFI Vol. 75 (1998), p.35.

[17] P. Bystricky: SPIE Conf. Proc. Vol. 3985 (2000), p.552.

[18] M. Wegmann, F. Clemens, T. Graule, A. Hendry: Am. Ceram. Soc. Bull. Vol. 8 (2003), p.9501.

[19] J. Heiber, F. Clemens, T. Graule, D. Hülsenberg: Glass Sci. Technol. Vol. 77 (2004), p.211.

[20] F. Haendle: Extrusions in Ceramics (Springer, Germany 2007).

[21] J. Heiber, F. Clemens, U. Helbig, et al.: Acta Mater., accepted.

[22] A. Belloli, J. Heiber, F. Clemens, P. Ermanni: J. Intel. Mat. Syst. Str., in preparation.

[23] G. W. Ehrenstein, D. Drummer: Hochgefüllte Kunststoffe mit definierten magnetischen, thermischen und elektrischen Eigenschaften (Springer, Germany 2002).

[24] R. M. German: Sintering Theory and Practice (John Wiley & Son, USA 1996).

[25] R. Hansch, S. Seifert, W. Braue, et al.: J. Eur. Ceram. Soc. Vol. 24 (2004), p.2485.

Fetching data from Crossref.
This may take some time to load.