Investigation on the Effects of Zn on PbTiO3


Article Preview

Synthesis of Zn-doped PbTiO3 was done using solid-state method. The effects of varying amount of Zn were investigated. Stoichiometric amount of precursors were mixed and ground. The pressed mixtures were calcined at 800°C and sintered at 1,100 °C after regrinding. The samples were characterized using X-ray Diffraction (XRD), Differential Thermal Analysis (DTA), and Scanning Electron Microscopy (SEM). The XRD verifies the existence of PTO in the samples. DTA shows the thermal profile of the samples. Among the different concentrations of Zn that were added, the sample with 5% mole fraction showed the lowest melting point. For 5% mole fraction and greater, SEM images showed flattening and fusing of grains.



Key Engineering Materials (Volumes 368-372)

Edited by:

Wei Pan and Jianghong Gong




J.A. Garcia and M.U. Herrera, "Investigation on the Effects of Zn on PbTiO3", Key Engineering Materials, Vols. 368-372, pp. 5-7, 2008

Online since:

February 2008




[1] T. -Y. Chen and S. -Y. Chu: J. Eur. Ceram. Soc. Vol. 23 (2003), p.2171.

[2] K. Takemura, M. Ozgul, V. Bornand, et al.: J. Appl. Phys. Vol. 88 (2000), p.7272.

[3] B.M. Jin, D.S. Lee, I.W. Kim, et al.: Ceram. Intl. Vol. 30 (2004), p.1449.

[4] W.M. Zhu and Z. -G. Ye: Ceram. Intl. Vol. 30 (2004), p.1443.

[5] A. Garcia and D. Vanderbilt: J. Am. Phys. Soc. Vol. 54 (1996), p.3817.

[6] W. Chen, S. Kume, C. Duran, et al.: J. Eur. Ceram. Soc. Vol. 26 (2006), p.647.

[7] D. Bersani, P. P Lottici, A. Montenero, et al.: J. Non-Crys. Solids Vol. 192&193 (1995), p.490.

[8] D.S. Yu, J.C. Han and L. Ba: Am. Ceram. Soc. Bul. Vol. 81 (2002).

[9] M.D. Snel, W.A. Groen and G. de With: J. Eur. Ceram. Soc. Vol. 25 (2005), p.3229.

[10] X.G. Tang, H.K. Guo, Q.F. Zhou and J.X. Zhang: NanoStruc. Mater. Vol. 10 (1998), p.161.

[11] G. Borstel, R.I. Eglitis, E.A. Kotomin, et al.: Phys. Stat. Sol. (b) Vol. 236 (2003), p.253.

[12] J. Erhart and W. Cao: J. Appl. Phys. Vol. 94 (2003), p.3436.

[13] S. Yin and T. Sato: Electronic Suppl. Mater. for J. Mater. Chem. (2005), p.1.

[14] C-C. Chou and C-S. Chen: Ceram. Intl. Vol. 26 (2000), p.693.

[15] R. Jimenez, I. Bretos, J. Ricote, et al.: J. Eur. Ceram. Soc. Vol. 25 (2005), p.2319.

[16] G. Catalan, A. Janssens, S. Csiszar, et al.: J. Am. Phys. Soc. PRL Vol. 96 (2006), p.127602: 1-4.

[17] D. Zekria, A.M. Glazer, V. Shuvaeva, et al.: J. Appl. Cryst. Vol. 37 (2004), p.551.

[18] A.G. Kalinichev, J.D. Bass, B.N. Sun and D.A. Payne: J. Mater. Res. Vol. 12 (1997), p.2623. 1160 1180 1200 1220 1240 1260 0 1 2 3 4 5 6 7 8 9 10 11 12 % mole fraction Zn Thermal Peaks ( 0C) Fig. 3. Thermal peaks of Zn-PbTiO3.