Preparation and Thermoelectric Properties of AgPb18SbTe20 Materials via Hydrothermal Synthesis Method

Abstract:

Article Preview

AgPb18SbTe20 nano-powders have been synthesized by a hydrothermal synthesis method at 180 °C for 20 h, using AgNO3, Pb(NO3)2, Sb(NO3)3, Na2TeO3 as starting materials and KBH4 as a reductant. AgPb18SbTe20 bulk thermoelectric materials were obtained by pressureless sintering at 450 °C or 520 °C under argon atmosphere, after uniaxial pressing the as-synthesized powders into pellets. The phase composition and thermal effects of as-prepared powders were characterized by X-ray diffraction (XRD) and DSC-TG analyses, respectively. Electrical properties of the as-prepared bulk materials were measured from room temperature to about 700 K, and the maximum power factor of 85 μW/mK2 was achieved at 600 K for the sample sintered at 723 K for 3 h.

Info:

Periodical:

Key Engineering Materials (Volumes 368-372)

Edited by:

Wei Pan and Jianghong Gong

Pages:

550-552

Citation:

H. Li et al., "Preparation and Thermoelectric Properties of AgPb18SbTe20 Materials via Hydrothermal Synthesis Method", Key Engineering Materials, Vols. 368-372, pp. 550-552, 2008

Online since:

February 2008

Export:

Price:

$38.00

[1] F.J. DiSalvo: Science Vol. 285 (1999), p.703.

[2] R. Venkatasubramanian, E. Siivola, T. Colpitts, et al.: Nature Vol. 413 (2001), p.597.

[3] D.Y. Chung, T. Hogan, P. Brazis, et al.: Science Vol. 287 (2000), p.1024.

[4] A. Majumdar: Science Vol. 303 (2004), p.777.

[5] K.F. Hsu, S. Loo, F. Gou, et al.: Science Vol. 303 (2004), p.818.

[6] A. Kosuga, M. Uno, K. Kurosaki, S. Yamanaka: J. Alloys Compd. Vol. 387 (2005), p.52.

[7] N. Chen, F. Gascoin, G. J. Snyder, et al.: Appl. Phys. Lett. Vol. 87 (2005), p.171903.

[8] H. Wang, J.F. Li, C.W. Nan, et al.: Appl. Phys. Lett. Vol. 88 (2006), p.092104.

[9] P.F.P. Poudeu, J.D. Angelo, A.D. Downey, et al.: Angew. Chem. Vol. 118 (2006), p.3919.

[10] J. Androulakis, K.F. Hsu, R. Pcionek, et al.: Adv. Mater. Vol. 18 (2006), p.1170.

[11] E. Quarez, K.F. Hsu, R. Pcionek, et al.: J. Am. Chem. Soc. Vol. 127 (2005), p.9177.

[12] D. Bilc, S.D. Mahanti, E. Quarez, et al.: Phys. Rev. Lett. Vol. 93 (2004), p.146403.

[13] A. Kosuga, M. Uno, K. Kurosaki, et al.: J. Alloys Compd. Vol. 288 (2005), p.391.

[14] A. J. Karkamkar and M.G. Kanatzdis: J. Am. Chem. Soc. Vol. 128 (2006), p.6002.

[15] K.F. Cai and X.R. He: Mater. Lett. Vol. 60 (2006), p.2461.

[16] M. Yoshimura: J. Mater. Res. Vol. 13 (1998), p.796.

[17] Y. Sun, G.M. Fuge, N.A. Fox, et al.: Adv. Mater. Vol. 17 (2005), p.2477.