Dipole Cluster State and Dielectric Relaxation in Relaxor Ferroelectrics

Abstract:

Article Preview

The Ginzburg-Landau theory on ferroelectrics with random field induced by dipole defects is studied using Monte Carlo simulation in order to investigate the possible dipole clustering and freezing behaviors as well as the dielectric relaxation of relaxor ferroelectrics. The dipole clustering above the transition temperature and the cluster-freezing far below this temperature are identified. The intrinsic correspondence between dipole-clustering/freezing and the multi-peaked time-domain distribution of dielectric relaxation is established.

Info:

Periodical:

Key Engineering Materials (Volumes 368-372)

Edited by:

Wei Pan and Jianghong Gong

Pages:

565-569

Citation:

Q.C. Li and J.M. Liu, "Dipole Cluster State and Dielectric Relaxation in Relaxor Ferroelectrics", Key Engineering Materials, Vols. 368-372, pp. 565-569, 2008

Online since:

February 2008

Authors:

Export:

Price:

$38.00

[1] A. A. Bokov and Z. G. Ye, J. Mater. Sci. Vol. 41 (2006), p.31; R. Blinc, V. Laguta, and B. Zalar, Phys. Rev. Lett. Vol. 91 (2003), p.247601.

[2] A. E. Glazounov and A. K. Tagantsev, Phys. Rev. Lett. Vol. 85 (2000), p.2192.

[3] A. I. Kingon, S. K. Streiffier, C. Basceri, and S. R. Summerfelt, MRS Bull. Vol. 21 (1996), p.46; D. L. Polla and L. F. Francis, MRS Bull. Vol. 21 (1996), p.59.

DOI: https://doi.org/10.1557/s0883769400035910

[4] L. E. Cross, Ferroelectrics Vol. 76 (1987), p.241; Ferroelectrics Vol. 151 (1994), p.305.

[5] D. Viehland, S. J. Jang, L. E. Cross, and M. Wutting, J. Appl. Phys. Vol. 68 (1990), p.2916; Phys. Rev. B Vol. 43 (1991), p.8316.

[6] M. Tyunina and J. Levoska, Phys. Rev. B Vol. 63 (2001), p.224102; Phys. Rev. B Vol. 72 (2995), p.104112; J. Appl. Phys. Vol. 97 (2005), p.114107.

[7] B. E. Vugmeister and M. D. Glinchuk, Rev. Mod. Phys. Vol. 62 (1990), p.993.

[8] A. K. Tagantsev, Phys. Rev. Lett. Vol. 72 (1994), p.1100.

[9] S. Semenovskaya and A. G. Khachaturyan, J. Appl. Phys. Vol. 83 (1998), p.5125; C. C. Su, B. Vugmeister, and A. G. Khachaturyan, J. Appl. Phys. Vol. 90 (2001), p.6345.

[10] W. Cao and L. E. Cross, Phys. Rev. B Vol. 44 (1991), p.5; S. Nambu and D. A. Sagala, Phys. Rev. B Vol. 50 (1994), p.5838; B. G. Potter, Jr., V. Tikare, and B. A. Tuttle, J. Appl. Phys. Vol. 87 (2000), p.4415.

[11] J. -M. Liu, X. Wang, H. L. W. Chan, and C. L. Choy, Phys. Rev. B Vol. 69 (2004), p.094114; X. Wang, J. -M. Liu, H. L. W. Chan, and C. L. Choy, J. Appl. Phys. Vol. 95 (2004), p.4282.

[12] L. F. Wang and J. -M. Liu, Appl. Phys. Lett. Vol. 89 (2006), p.092909; B. L. Li, X. P. Liu, F. Fang, J. L. Zhu, and J. -M. Liu, Phys. Rev. B Vol. 73 (2006), p.014107.

[13] H. L. Hu and L. Q. Chen, Mater. Sci. Eng. A Vol. 238 (1997), p.182.

[14] M. B. Salamon, P. Lin, and S. H. Chun, Phys. Rev. Lett. Vol. 88 (2002), p.197203.

[15] K. F. Wang, Y. Wang, L. F. Wang, S. Dong, D. Li, Z. D. Li, H. Yu, Q. C. Li, and J. -M. Liu, Phys. Rev. B Vol. 73 (2006), p.134411.

[16] J. -M. Liu, S. Dong, H. L. W. Chan, and C. L. Choy, J. Phys.: Conden. Matt. Vol. 18 (2006), p.8973.