Microwave-Assisted Synthesis of Hexagonal Barium Ferrite Powders with Nano-Particle

Abstract:

Article Preview

A novel ceramic synthesis technique, microwave-assisted process was investigated for the production of Barium Hexagonal ferrite (BaFe12O19) powders with improved physical properties. Compared to conventional syntheticroute, the new method significantly shortened synthetic steps and reaction time. This technique involves the reaction of stoichiometric amount of metal nitrates and appropriate dosage of citric acid at microwave oven and the whole process took only 15 min. The powders of BaFe12O19 were further investigated by X-ray diffractometer (XRD) and scanning electron microscopy (SEM). The results showed that the formation temperature of M-type Ba hexaferrite is significant low, compared to conventional furnace heating. The X-ray diffraction analysis demonstrates that the phase purity of the microwave-processed samples were determined and compared with a conventionally processed material. SEM observations indicate that the size of the synthesized BaFe12O19 powders is small and uniform distribution. Thus, microwave irradiation is proved to be a novel, extremely facile, timesaving and energy-efficient route to the synthesis of BaFe12O19 powders.

Info:

Periodical:

Key Engineering Materials (Volumes 368-372)

Edited by:

Wei Pan and Jianghong Gong

Pages:

576-578

Citation:

L. M. Dong et al., "Microwave-Assisted Synthesis of Hexagonal Barium Ferrite Powders with Nano-Particle", Key Engineering Materials, Vols. 368-372, pp. 576-578, 2008

Online since:

February 2008

Export:

Price:

$38.00

[1] S. Sugimoto, S. Kondo, K. Okayama, et al: IEEE Trans. Magn. Vol. 35 (1999), p.3154.

[2] M. B. Amin and J. R. James: Radio Electron. Engineers Vol. 51 (1981), p.209.

[3] M. R. Meshram, N.K. Agrawal, B. Sinha et al.: J. Mag. Mag. Mater. Vol. 271 (2004), p.207.

[4] H. C. Fang, Z. Yang, C. K. Ong, et al.: J. Magn. Magn. Materials Vol. 187 (1998), p.129.

[5] H. Vincent, E. Brando and B. Sugg: J Solid State Chem. Vol. 120 (1995), p.17.

[6] S. E. Jacobo, L. Civale and M. A. Blesa: J. Magn. Magn. Materials Vol. 260 (2003), p.37.

[7] P. E. Garcia-Casillas, A. M. Beesley, D. Bueno, et al.: J. Alloy Compd. Vol. 369 (2004), p.185.

[8] S. D. Yoon, C. Vittoria and S. A. Oliver: J. Magn. Magn. Materials Vol. 265 (2003), p.130.

[9] S. S. Fortes, J. G. S Duque and M. A. Macedo: Physica. B Vol. 384 (2006), p.88.

[10] X. Tang, B. Y. Zhao and K. A. Hu: J. Materials Science Vol. 41 (2006), p.3867.

[11] X. Y. Liu and J. Wang: Journal of Magnetism and Magnetic Materials Vol. 195 (1999), p.452.

[12] J. Wang and Y. J. Zhu: Modern Physics Letters. B Vol. 20(2006), p.359.

[13] W. Y. Zhao, Q. J. Zhang, X. F Tang, et al.: J. Applied Physics Vol. 99 (2006), p. E89091.

[14] S. R. Janasi, F. J. G. Landgraf, M. Emura, et al.: IEEE Trans. on Magnetics Vol. 36 (2000), p.3327.

[15] L. T. Guo, H. J. Luo, J. Q. Gao, et al.: Materials Letters Vol. 60 (2006), p.3011.

[16] D. L. Boxall, G. A. Deluga, E. A. Kenik, et al.: Chem. Mater. Vol. 13 (2001), p.891. (a) (b) (c) Fig. 2 SEM images of BaFe12O19 powders prepared by different heat treatment process.

Fetching data from Crossref.
This may take some time to load.