P-Type Transparent Conductivity of Cu1-xAlS2 (x = 0 ~ 0.08)

Abstract:

Article Preview

A series of Cu1-xAlS2 (x = 0 ~ 0.08) bulk samples were synthesized by spark plasma sintering. The electrical and optical properties were investigated. P-type conductions for all samples were confirmed by both positive Seebeck coefficient and Hall coefficient. Bulk undoped CuAlS2 had a high conductivity of about 0.9 S/cm with a large band gap of 3.4 eV at room temperature. For vacancy-doped in Cu site, the carrier concentration was highly enhanced, reaching 1.7 × 1019 cm-3 for 8 mol% doped sample, and without decreasing the bang gap. The introduction of vacancies destroys the continuity of Cu-S network, which decreases the Hall mobility.

Info:

Periodical:

Key Engineering Materials (Volumes 368-372)

Edited by:

Wei Pan and Jianghong Gong

Pages:

666-668

Citation:

M. L. Liu et al., "P-Type Transparent Conductivity of Cu1-xAlS2 (x = 0 ~ 0.08)", Key Engineering Materials, Vols. 368-372, pp. 666-668, 2008

Online since:

February 2008

Export:

Price:

$38.00

[1] K. Badekar: Ann. Phys. (Leipzig) Vol. 22 (1907), p.749.

[2] H. Kawazoe, M. Yasukawa, H. Hyodo, et al.: Nature Vol. 389 (1997), p.939.

[3] M. Sanmyo, Y. Tomita and K. Kobayashi: Chem. Mater. Vol. 15 (2003), p.819.

[4] J.M. Bian, X.M. Li, X.D. Gao, et al.: Appl. Phys. Lett. Vol. 84 (2004), p.541.

[5] J.R. Duclère, M. Novotny, A. Meaney, et al.: Sup. Micr. Vol. 38 (2005), p.397.

[6] K. Ueda, T. Hase, H. Yanagi, et al.: J. Appl. Phys. Vol. 89 (2001), p.1790.

[7] H. Yanagi, T. Hase, S. Ibuki, et al.: Appl. Phys. Lett. Vol. 78 (2001), p.1583.

[8] B.J. Ingram, B.J. Harder, N.W. Hrabe, et al.: Chem. Mater. Vol. 16 (2004), p.5623.

[9] A. Kudo, H. Yanagi, H. Hosono, et al.: Appl. Phys. Lett. Vol. 73 (1998), p.220.

[10] H. Yanagi, J. Tate, S. Park, et al.: Appl. Phys. Lett. Vol. 82 (2003), p.2814.

[11] K. Ueda, S. Inoue, H. Hirose, et al.: Appl. Phys. Lett. Vol. 77 (2000), p.2701.

[12] S. Park, D.A. Keszler, M.M. Valencia, et al.: Appl. Phys. Lett. Vol. 80 (2002), p.4393.

[13] M.L. Liu, F.Q. Huang, L.D. Chen, et al.: Appl. Phys. Lett. Vol. 90 (2007), p.072109.

[14] G. Brandt, A. Räuber, and J. Schneider: Solid State Commun. Vol. 12 (1973), p.481.

[15] J.L. Shay and J.H. Wernick: Ternary Chalcopyrite Semiconductors: Growth, Electronic Properties, and Applications. (Pergamon Press, Oxford 1975), p.110.

DOI: https://doi.org/10.1016/b978-0-08-017883-7.50009-3

[16] I. Ijjaali, C.L. Haynes, A.D. McFarland, et al.: Solid State Chem. Vol. 172 (2003), p.257.

[17] R.K. Bhandari, Y. Hashimoto and K. Ito: Jpn. J. Appl. Phys. Vol. 43 (2004), p.6890.

[18] I. Aksenov, Y. Kudo and K. Sato: Jpn. J. Appl. Phys. Vol. 31 (1992), p. L145. Fig. 3 Electrical conductivities of Cu1-xAlS2 as a function of reciprocal temperature.