Effects of Mn-Doping on the Piezoelectric and Ferroelectric Properties of (Na0.8K0.2)0.5Bi0.5TiO3 Ceramics

Abstract:

Article Preview

Lead-free piezoelectric ceramics of (Na0.8K0.2)0.5Bi0.5TiO3+x wt.% Mn (abbreviated as NBKT-x% Mn, x=0~0.5) were synthesized by solid-state reaction. The grain growth of the ceramics was restrained by Mn-doping at a certain extent. The mechanical quality factor Qm increases and the dielectric loss tanδ decreases with the increase of Mn-doping. Best piezoelectric properties were obtained for the composition of NKBT-0.2%Mn: d33=158 pC·N-1, tanδ=2.9% at 1 kHz, Qm=110 and kp=30%. The P-E loops show that remnant polarization Pr and coercive field Ec decrease slightly with the amount of the Mn2+ increasing up to 0.2wt.% and then increase as the content of Mn2+ increases further. NKBT-0.5wt. % Mn exhibits strong ferroelectricity with remnant polarization Pr = 38μC/cm2.

Info:

Periodical:

Key Engineering Materials (Volumes 368-372)

Edited by:

Wei Pan and Jianghong Gong

Pages:

69-71

Citation:

X. P. Jiang et al., "Effects of Mn-Doping on the Piezoelectric and Ferroelectric Properties of (Na0.8K0.2)0.5Bi0.5TiO3 Ceramics", Key Engineering Materials, Vols. 368-372, pp. 69-71, 2008

Online since:

February 2008

Export:

Price:

$38.00

[1] G.A. Smolenskii, V.A. Isupv and N.N. Krainik: Sov. Phys. Sol. Stat. Vol. 2 (1961), p . 2584.

[2] K. Sakata and Y. Masuda: Ferroelectrics Vol. 7 (1974), p.347.

[3] J.V. Zvirgzds, P.P. Kpostis and T.V. Kruzina: Ferroelectrics Vol. 40 (1980), p.75.

[4] T. Takennaka: Ferroelectrics, Vol. 87-98 (1999), p.230.

[5] H. Nagata, N. Koizumi and T. Takenaka: Key Eng. Mater., Vol. 37-40 (1999), p.169.

[6] A. Herabut and A. Safari: J. Am. Ceram. Soc. Vol. 80 (11) (1997), p.2954.

[7] K. Sakata and Y. Masuda: Ferroelectrics, Vol. 7 (1974), p.347.

[8] T. Takenaka, K. Maruyama and K. Sakata: Jap. J. Appl. Phys., Vol. 30(9B) (1991), p.2236.

[9] S. Kuharuanggrong and W. Schulze: J. Am. Ceram. Soc., Vol. 79(5) (1996) , p.1273.

[10] O. Elkechai, M Manier and J. P. Mercurio: Phys. Stat. Solidi (a), Vol. 157 (1996) p.499.

[11] Y. M. Li. and W. Chen: Ceramics International, Vol. 31 (2005), p.139.

[12] A. Sasaki, T. Chiba, Y. Mamiya, and E. Otsuki: Jpn, J. Appl. Phys., Part 1 38 (1999), p.5564.

[13] X. X. Wang, X. G. Tang, and H.L.W. chan: Appl. Phys. lett., 85 (2004) 91.

[14] X .X. Wang, H. L. W. Chan and C. L. Choy: Solid. State. Commun., 125(7-8) (2003), p.395.

[15] Y.M. Li and W. Chen: Mater. Lett., 33(1)(2007), p.95.

[16] T. Kamiya, T. Suzuki, T. Tsurumi and M. Daimon: Jpn. J. Appl. Phys., Vol. 31 (1992), p.3058. Fig. 4 The P-E hysteresis loops of NKBT-x wt. %Mn ceramics at room temperature. (a: x = 0; b: x = 0. 1; c: x = 0. 2; d: x = 0. 4; e: x = 0. 5).

Fetching data from Crossref.
This may take some time to load.