Microstructure and Hardness of Ti-Si-C-N Coatings


Article Preview

Series Ti-Si-C-N coatings with different carbon were deposited on a high-speed-steel substrate by means of pulsed direct current plasma enhanced chemical vapor deposition (PECVD). The structure and hardness were subsequently investigated using X-ray diffraction, transmission electron microscopy and microindentation measurements. It was found that the carbon content had a profound effect on the microstructure and hardness of the Ti-Si-C-N coatings. The results indicated that these coatings consisted of the dominant nanocrystalline Ti(C, N), accompanying with a small amount of silicide (TiSi2, Si3N4 or SiC) dispersed within the dominant phase. An increase in C content resulted in the decrease in the grain size and the increase in fcc-structure lattice parameter. A maximum hardness of 48 GPa was achieved for a two-phase {Ti (C N) + SiC} structure at the C content of 38.6 at.%.



Key Engineering Materials (Volumes 373-374)

Main Theme:

Edited by:

M.K. Lei, X.P. Zhu, K.W. Xu and B.S. Xu






Y. Guo et al., "Microstructure and Hardness of Ti-Si-C-N Coatings", Key Engineering Materials, Vols. 373-374, pp. 188-191, 2008

Online since:

March 2008




In order to see related information, you need to Login.

In order to see related information, you need to Login.