Microstructural Evaluation of High Oxidation Resistant CrAlSiN Hard Coating at Elevated Temperature in Air Atmosphere


Article Preview

CrAlSiN hard coatings were fabricated on the Si substrate from metallurgical Cr0.45Al0.45Si0.10 alloy target by reactive r.f. magnetron sputtering. The oxidation resistance of CrAlSiN coatings was investigated after annealing at temperatures between 900 and 1100°C for 1 hr in air. The phase identification and microstructure of CrAlSiN coatings after heat treatment were analyzed by X-ray diffraction (XRD). The hardness of CrAlSiN coating after heat treatment at 900oC for 1hr in air is slightly decreased from 30.2GPa to 28.3±1.3GPa, which was caused by the thin oxide formation on the surface of the film. The microstructure of CrAlSiN coating after heat treatment at 1000oC from 1 hr analyzed by TEM revealed two types of layer feature, including the nanocrystalline grain embedded in the Al-riched amorphous layer and reaction interface with relative high content of Si.



Key Engineering Materials (Volumes 373-374)

Main Theme:

Edited by:

M.K. Lei, X.P. Zhu, K.W. Xu and B.S. Xu




S. K. Tien et al., "Microstructural Evaluation of High Oxidation Resistant CrAlSiN Hard Coating at Elevated Temperature in Air Atmosphere", Key Engineering Materials, Vols. 373-374, pp. 446-451, 2008

Online since:

March 2008




[1] P. Panjan, B. Navinsek, A. Cvelbar, A. Zalar, J. Vlcek, Surf. Coat. Technol. 98 (1998) 1497.

[2] J. N. Tu, J. G. Duh and S. Y. Tsai, Surf. Coat. Technol. 133-134 (2000) 181.

[3] P.H. Mayrhofer, G. Tischler, C. Mitterer, Surf. Coat. Technol. 142-144 (2001) 78.

[4] M. Kawate, A. K. Hashirmoto and T. Suzuki, Surf. Coat. Technol. 165 (2003) 163.

[5] A. E. Reiter, V. H. Derflinger, B. Hanselmann, T. Bachmann and B. Sartory, Surf. Coat. Technol. 200 (2005) 2114.

[6] H. Willmann, P. H. Mayrhofer, P.O.A. Persson, A. E. Reiter, L. Hultman and C. Mitterer, Scripta Mater., 54 (2006) 1847.

DOI: https://doi.org/10.1016/j.scriptamat.2006.02.023

[7] R. Wuhrer and W. Y. Yeung, Scripta Mater., 50 (2004) 1461.

[8] M. Kawate, A. Kimura and T. Suzuki, J. Vac. Sci. Technol. A, 20 (2002) 569.

[9] J. H. Park, W. S. Chung, Y. R. Cho, K. H. Kim, Surf. Coat. Technol. 188-189 (2004) 425.

[10] G. S. Kim, B. S. Kim and S. Y. Lee, Surf. Coat. Technol. 200 (2005) 1814.

[11] P. Hones, R. Sanjines and F. Levy, Thin Solid Films, 332 (1998) 240.

[12] C. H. Lin and J. G. Duh, Surf. Coat. Technol., 201 (2006) 1316.

[13] C.H. Lin, J.G. Duh, J.W. Yeh, Surf. Coat. Technol. 201 (2007) 6304.

[14] C.H. Lai, S.J. Lin, J.W. Yeh, S.Y. Chang, Surf. Coat. Technol. 201 (2006) 3275.

[15] C.H. Lai, S.J. Lin, J.W. Yeh, D. Andrew, J. Phys. D: Appl. Phys. 39 (2006) 4628.

[16] X. P. Hu, Z. H. Han, G. Y. Li and M. Y. Gu, J. Vac. Sci. Technol. A, 20 (2002) (1921).

[17] L. Rebouta, C.J. Tavares, R. Aimo, Z. Wang, K. Pischow, E. Alves, T.C. Rojas, J.A. Odriozola, Surf. Coat. Technol. 133-134 (2000) 234.

[18] S. Veprek*, M.G.J. Veprek-Heijman, P. Karvankova, J. Prochazka, Thin Solid Films 476 (2005) 1.

DOI: https://doi.org/10.1016/j.tsf.2004.10.053

[19] B.D. Cullity, S.R. Stock, Elements of x-ray diffraction, (New Jersey: Prentice Hall, 2001), p.170.

[20] Y. Makino, Surf. Coat. Technol. 193 (2005) 185.

[21] F. H. Lu and H. Y. Chen, Thin Solid Films, 398-399, (2001) 368.

[22] I. W. Park, S. R. Choi, M. H. Lee and K. H. Kim, J. Vac. Sci. Technol. A, 21 (2003) 895.

Fetching data from Crossref.
This may take some time to load.