Tool Cutting Force Modeling in High Speed Milling Using PSO-BP Neural Network


Article Preview

The theory and the algorithm of Particle swarm optimization (PSO) based for neural network training were applied in the research of the modeling of milling force in high speed machining. The PSO was used to train connection weights of multi-layer feed forward neural network until the fitness error tended to be stable. Then BP algorithm was adopted to accomplish cutting force forecasting based on optimized initial weights, which take full use of the global optimization of PSO and local accurate searching of BP. The results of simulation showed that with comparison with other BP algorithms, PSO-BP not only effectively shortens the time of training networks, but also greatly improves the accuracy of prediction and universal approximation. PSO technique can act as an alternative training algorithm for ANNs.



Key Engineering Materials (Volumes 375-376)

Edited by:

Yingxue Yao, Xipeng Xu and Dunwen Zuo




J. X. Zheng et al., "Tool Cutting Force Modeling in High Speed Milling Using PSO-BP Neural Network", Key Engineering Materials, Vols. 375-376, pp. 515-519, 2008

Online since:

March 2008




[1] C.A. Van Luttervelt, T.H.C. Childs, L.S. Jawahir, F. Klocke and P.K. Venuvinod: Ann. CIRP, Vol. 47 (1998), p.587.

[2] P.T. Mativenga and K.K.B. Hon: Journal of Manufacturing Science and Engineering, Vol. 127 (2005), p.251.

[3] A. Alique, R. Haber, S. Ros and C. Gonzalez: Proceedings of the 2000 IEEE International Symposium on Intelligent Control (Rio, Greece, July 17-19, 2000).

[4] Y. Liu and C. Wang: Int. J. Adv. Manuf. Technol., Vol. 15 (1999), p.791.

[5] V. Tandon and H. El-Mounayri: Int. J. Adv. Manuf. Technol., Vol. 18 (2000), p.693.

[6] D.L. Wang and J.P. Chen: Journal of Dalian University of Technology, Vol. 45 (2005), p.814. (In Chinese).

[7] C. Zhang, R.R. Zhou and H.J. Zhuang: Chinese Mechanical Engineering, Vol. 16 (2005), p.1791. (In Chinese).

[8] J. Kennedy, R. Eberhart: Proceedings of the 1995 IEEE International Conference on Neural Networks (Perth, Australia, Nov. 27-Dec. 1, 1995).

[9] J. Kennedy: Proceedings of the 1997 International Conference on Evolutionary Computation (Indianapolis, Indiana, April 13-16, 1997).