A Genetic Basis for Design of Biomaterials for In Situ Tissue Regeneration


Article Preview

Historically the function of biomaterials has been to replace diseased, damaged and aged tissues. First generation biomaterials, including bio ceramics, were selected to be as inert as possible in order to minimize the thickness of interfacial scar tissue. Bioactive glasses provided an alternative from the 1970’s onward; second generation bioactive bonding of implants with tissues and no interfacial scar tissue. This chapter reviews the discovery that controlled release of biologically active Ca and Si ions from bioactive glasses leads to the up-regulation and activation of seven families of genes in osteoprogenitor cells that give rise to rapid bone regeneration. This finding offers the possibility of creating a new generation of gene activating bioceramics designed specially for tissue engineering and in situ regeneration of tissues.



Edited by:

Maria Vallet-Regí




L. L. Hench and J. M. Polak, "A Genetic Basis for Design of Biomaterials for In Situ Tissue Regeneration", Key Engineering Materials, Vol. 377, pp. 151-166, 2008

Online since:

March 2008




[1] 117-141 (1971).

[2] L.L. Hench, June W. Hench and D.C. Greenspan, Bioglass: A Short History and Bibliography, J. Aust. Ceram. Soc. 40 [1] 1-42 (2004).

[3] Larry L. Hench, J. Mater Sci: Mater Med 17: 967-978 (2006).

[4] L. L. Hench and E. C. Ethridge, Biomaterials: An Interfacial Approach, Academic Press, New York, (1982).

[5] S. F. Hulbert, J. C. Bokros, L. L. Hench, J. Wilson, and G. Heimke, Ceramics in Clinical Applications, Past, Present and Future,; pp.189-213 in High Tech Ceramics. Edited by P. Vincenzini. Elsevier Science Pub. B.V., Amsterdam, (1987).

[6] L.L. Hench and June Wilson, An Introduction to Bioceramics, World Scientific, London, (1993).

[7] U. Gross, R. Kinne, H. J. Schmitz, V. Strunz, The Response of Bone to Surface Active Glass/Glass-Ceramics, CRC Critical Reviews in Biocompatibility, D. Williams, ed. 4 2 (1988).

[8] L.L. Hench, Bioceramics: From Concept to Clinic, J. Am. Ceram. Soc., 74, [7], 1487-1510, (1991).

[9] L. L. Hench, Bioactive Ceramics,; p.54 in Bioceramics: Materials Characteristics Versus In Vivo Behavior, Vol. 523. Edited by P. Ducheyne and J. Lemons. Annals N.Y. Acad. Sci. (1988).

[10] L. L. Hench and J. W. Wilson, Surface-Active Biomaterials, Science, 226 630 (1984).

[11] U. Gross and V. Strunz, The Interface of Various Glasses and Glass-Ceramics with a Bony Implantation Bed, J. Biomed. Mater. Res., 19 251 (1985).

DOI: https://doi.org/10.1002/jbm.820190308

[12] J. Wilson, G. H. Pigott, F. J. Schoen, and L. L. Hench, Toxicology and Biocompatibility of Bioglass, J. Biomed. Mater. Res., 15 805 (1981).

DOI: https://doi.org/10.1002/jbm.820150605

[13] T. Nakamura, T. Yamamuro, S. Higashi, T. Kokubo, and S. Itoo, A New Glass-Ceramic for Bone Replacement: Evaluation of its Bonding to Bone Tissue, J. Biomed. Mater. Res., 19 685 (1985).

DOI: https://doi.org/10.1002/jbm.820190608

[14] T. Kokubo, S. Ito, S. Sakka, and T. Yamamuro, Formation of a High-Strength Bioactive Glass- Ceramic in the System MgO-CaO-SiO2-P2O5, J. Mater. Sci., 21 536 (1986).

DOI: https://doi.org/10.1007/bf01145520

[15] T. Kitsugi, T. Yamamuro, and T. Kokubo, Bonding Behavior of a Glass-Ceramic Containing Apatite and Wollastonite in Segmental Replacement of the Rabbit Tibia Under Load-Bearing Conditions, J. Bone, Jt. Surg., 71A 264 (1989).

DOI: https://doi.org/10.2106/00004623-198971020-00014

[16] S. Yoshii, Y. Kakutani, T. Yamamuro, T. Nakamura, T. Kitsugi, M. Oka, T. Kokubo, and M. Takagi, Strength of Bonding Between A-W Glass Ceramic and the Surface of Bone Cortex, J. Biomed. Mater. Res., 22 [A] 327 (1988).

DOI: https://doi.org/10.1002/jbm.820221410

[17] T. Yamamuro, J. Shikata, Y. Kakutani, S. Yoshii, T. Kitsugi, and K. Ono, Novel Methods for Clinical Applications of Bioactive Ceramics,; p.107 in Bioceramics: Material Characteristics Versus In Vivo Behavior. Edited by P. Ducheyne and J. E. Lemons. New York Academy of Science, New York, (1988).

DOI: https://doi.org/10.1111/j.1749-6632.1988.tb38505.x

[18] T. Yamamuro, L. L. Hench, and J. Wilson, eds., Handbook on Bioactive Ceramics: Bioactive Glasses and Glass-Ceramics, Vol. I. CRC Press, Boca Raton, FL, (1990).

DOI: https://doi.org/10.1002/jbm.820250709

[19] L.L. Hench and J.K. West, Biological Applications of Bioactive Glasses, Life Chemistry Reports, Vol. 13, 187-241 (1996).

[20] L. L. Hench, H. A. Paschall, Direct Chemical Bonding Between Bio-Active Glass-Ceramic Materials and Bone., J Biomed. Maters. Res. Symp., 4 25-42 (1973).

[21] L. L. Hench, A. E. Clark, Adhesion to Bone,; Chapt. 6 in Biocompatibility of Orthopedic Implants, Vol 2. Edited by D. F. Williams. CRC Press, Boca Raton, FL, (1982).

[22] Ö. H. Andersson, G. Liu, K. H. Karlsson, L. Niemi, J. Miettinen, and J. Juhanoja, In Vivo Behavior of Glasses in the SiO2-Na2O-CaO-P2O5-Al2O3-B2O3 System, J. Materials Sci., Materials in Medicine (1990).

DOI: https://doi.org/10.1007/bf00701080

[23] U. M. Gross and V. Strunz, The Anchoring of Glass Ceramics of Different Solubility in the Femur of the Rat, J. Biomed. Mater. Res., 14 607 (1980).

DOI: https://doi.org/10.1002/jbm.820140507

[24] U. Gross, J. Brandes, V. Strunz, J. Bab, and J. Sela, The Ultrastructure of the Interface Between a Glass Ceramic and Bone, J. Biomed. Mater. Res., 15 291 (1981).

DOI: https://doi.org/10.1002/jbm.820150302

[25] K. Kangasniemi and A. Yli-Urpo, Biological Response to Glasses in the SiO2-Na2O-CaOP2O5-B2O3 System,; pp.97-108 in Handbook of Bioactive Ceramics, Vol. I. Edited by T. Yamamuro, L. L. Hench and J. Wilson. CRC Press, Boca Raton, Florida, (1990).

[26] June Wilson and D. Nolletti, Bonding of Soft Tissues to Bioglass®, in Handbook of Bioactive Ceramics. Vol. 1 Edited by T. Yamamuro, L. L. Hench, and J. Wilson,. CRC Press, Boca Raton, FL pp.283-302 (1990).

DOI: https://doi.org/10.1002/jbm.820250709

[27] J. Wilson, A.E. Clark, E. Douek, J. Krieger, W.K. Smith, J.S. Zamet, Clinical Applications of Bioglass® Implants., in Bioceramics 7, Andersson, Happonen, Yli-Urpo (eds), ButterworthHeinemann, Oxford, 415, (1994).

DOI: https://doi.org/10.1016/b978-0-08-042144-5.50069-8

[28] C.A. Shapoff, D.C. Alexander, D.C., A.E. Clark, Clinical Use of A Bioactive Glass Particulate in The Treatment of Human Osseous Defects, Compendium Contin Educ Dent, 18, 4, 352-363 (1997).

[29] R. Reck, S. Storkel, and A. Meyer, Bioactive Glass-Ceramics in Middle Ear Surgery: An 8- Year Review,; p.100 in Bioceramics: Materials Characteristics Versus In Vivo Behavior, Vol. 523. Edited by P. Ducheyne and J. Lemons. Annals NY Acad. Sci., (1988).

DOI: https://doi.org/10.1111/j.1749-6632.1988.tb38504.x

[30] G. E. Merwin, Review of Bioactive Materials for Otologic and Maxillofacial Applications,; pp.323-328 in Handbook of Bioactive Ceramics, Vol I. Edited by T. Yamamuro, L. L. Hench and J. Wilson. CRC Press, Boca Raton, FL, (1990).

DOI: https://doi.org/10.1002/jbm.820250709

[31] E. Douek, Otologic Applications of Bioglass® Implants, in Proceedings of IVth International Symposium on Bioceramics in Medicine. Edited by W. Bonfield, London, Sept. 10-11, (1991).

[32] K. Lobel, Ossicular Replacement Prostheses, in Clinical Performance of Skeletal Prostheses, Hench and Wislon (eds), Chapman and Hall, Ltd, London, pp.214-236 (1996).

DOI: https://doi.org/10.1007/978-94-011-0541-5_13

[33] H.R. Stanley, M.B. Hall, A.E. Clark, J.C. King, L.L. Hench, and J.J. Berte, Using 45S5 Bioglass® Cones as Endosseous Ridge Maintenance Implants to Prevent Alveolar Ridge Resorption- A 5 Year Evaluation, Int. J. Oral Maxillofac. Implants. 12, 95-105 (1997).

[34] H.R. Stanley, A.E. Clark, L.L. Hench, Alveolar Ridge Maintenance Implants, in Clinical Performance of Skeletal Prostheses, L.L. Hench and J Wislon, eds, Chapman and Hall, Ltd., London, pp.255-270, (1996).

DOI: https://doi.org/10.1007/978-94-011-0541-5_15

[35] T. Yamamuro, A/W Glass-Ceramic: Clinical Applications, Chap. 6 in ref 6, p.89.

[36] J. Wilson and S.B. Low, Bioactive Ceramics for Periodontal Treatment: Comparative Studies in the Patus Monkey, J. Appl. Biomaterials, Vol 3, 123-169 (1992).

DOI: https://doi.org/10.1002/jab.770030208

[37] A.E. Fetner, M.S. Hartigan, S.B. Low, Periodontal Repair Using Perioglas® in NonHuman Primates: Clinical and Histologic Observations, Compendium Contin Educ Dent, 15(7), 932-939, (1994).

[38] L.L. Hench, The Challenge of Orthopaedic Materials", Current Orthopaedics, Vol. 14, 7-16 (2000).

[40] L.L. Hench, D.L. Wheeler and D.C. Greenspan, Molecular Control of Bioactivity in Sol-Gel Glasses, J. Sol-Gel Sci. and Tech. 13, 245-250 (1998).

DOI: https://doi.org/10.1023/a:1008643303888

[41] L.L. Hench, Bioceramics., J. Am. Ceram. Soc. 81 [7] 1705-28 (1998).

[42] M. Ogino, F. Ohuchi, and L. L. Hench, Compositional Dependence of the Formation of Calcium Phosphate Films on Bioglass, J. Biomed. Maters. Res., 14 55-64 (1980).

DOI: https://doi.org/10.1002/jbm.820140107

[43] A. E. Clark, C. G. Pantano and L. L. Hench, Auger Spectroscopic Analysis of Bioglass Corrosion Films, J. Amer. Ceram. Soc., 59 [1-2] 37-39 (1976).

[44] L. L. Hench, H. A. Paschall, W. C. Allen, and G. Piotrowski, Interfacial Behavior of Ceramic Implants, National Bureau of Standards Special Publication, 415 19-35 (1975).

[45] L. L. Hench and H. A. Paschall, Histo-Chemical Responses at a Biomaterials Interface, " J. Biomed. Maters. Res., 5 [1] 49-64 (1974).

[46] T. Kokubo, Surface Chemistry of Bioactive Glass-Ceramics, J. Non-Cryst. Solids, 120 138- 151 (1990).

DOI: https://doi.org/10.1016/0022-3093(90)90199-v

[47] T. Kokubo, Bonding Mechanism of Bioactive Glass-Ceramic A-W to Living Bone,; pp.41-50 in Handbook of Bioactive Ceramics, Vol I. Edited by T. Yamamuro, L. L. Hench and J. Wilson. CRC Press, Boca Raton, FL, (1990).

DOI: https://doi.org/10.1002/jbm.820250709

[48] I.D. Xynos, M.V.J. Hukkanen, J.J. Batten, I.D. Buttery, L.L. Hench J.M. Polak, Bioglass® 45S5 Stimulates Osteoblast Turnover and Enhances Bone Formation In Vitro: Implications and Applications for Bone Tissue Engineering., Calcif. Tiss. Int. 67: 321-329 (2000).

DOI: https://doi.org/10.1007/s002230001134

[49] L.L. Hench, J.M. Polak, I.D. Xynos, L.D.K. Buttery, Bioactive Materials to Control Cell Cycle, Mat Res Innovat 3: 313-323 (2000).

DOI: https://doi.org/10.1007/s100190000055

[50] I.D. Xynos, A.J. Edgar, L.D. Buttery, L.L. Hench, J.M. Polak. . "Ionic Dissolution Products of Bioactive Glass Increase Proliferation of Human Osteoblasts and Induce Insulin-like Growth Factor II mRNA Expression and Protein Synthesis, Biochem. Biophys. Res. Comm. 276: 461-465 (2000).

DOI: https://doi.org/10.1006/bbrc.2000.3503

[51] I.D. Xynos, A.J. Edgar, L.D.K. Buttery, L.L. Hench and J.M. Polak, J. Gene Expression Profiling of Human Osteoblasts Following Treatment with the Ionic Dissolution Products of Bioglass® 45S5 Dissolution, J. Biomed. Mater. Res., 55: 151-157 (2001).

DOI: https://doi.org/10.1002/1097-4636(200105)55:2<151::aid-jbm1001>3.3.co;2-4

[52] L. L. Hench, I. D. Xynos, A. J. Edgar, L. D. K. Buttery, J. M. Polak, J. P. Zhong, X. Y. Liu, and J. Chang, Gene Activating Glasses, Journal of Inorganic Materials, 17 (2002), 897-909.

[53] L. L. Hench, Glass and Genes: The 2001 W. E. S. Turner Memorial Lecture, Glass Technology, 44 (2003), 1-10.

[54] R. C. Bielby, I. S. Christodoulou, R. S. Pryce, W. J. P. Radford, L. L. Hench, and J. M. Polak, Time- and Concentration-Dependent Effects of Dissolution Products of 58S Sol-Gel Bioactive Glass on Proliferation and Differentiation of Murine and Human Osteoblasts, Tissue Engineering, 10 (2004).

DOI: https://doi.org/10.1089/ten.2004.10.1018

[55] R. C. Bielby, R. S. Pryce, L. L. Hench, and J. M. Polak, Enhanced Derivation of Osteogenic Cells from Murine Embryonic Stem Cells after Treatment with Ionic Dissolution Products of 58s Bioactive Sol-Gel Glass, Tissue Engineering, 11 (2005).

DOI: https://doi.org/10.1089/ten.2005.11.479

[56] I. Christodoulou, L. D. K. Buttery, P. Saravanapavan, G. P. Tai, L. L. Hench, and J. M. Polak, Dose- and Time-Dependent Effect of Bioactive Gel-Glass Ionic-Dissolution Products on Human Fetal Osteoblast-Specific Gene Expression, Journal of Biomedical Materials Research Part BApplied Biomaterials, 74B (2005).

DOI: https://doi.org/10.1002/jbm.b.30249

[57] I. Christodoulou, L. D. K. Buttery, P. Saravanapavan, G. P. Tai, L. L. Hench, and J. M. Polak, Characterization of Human Fetal Osteoblasts by Microarray Analysis following Stimulation with 58S Bioactive Gel-Glass ionic Dissolution Products, Journal of Biomedical Materials Research Part B-Applied Biomaterials, 77B (2005).

DOI: https://doi.org/10.1002/jbm.b.30455

[58] P. Saravanapavan, L.L. Hench Low Temperature Synthesis, Structure and Bioactivity of GelDerived Glasses in the Binary CaO-SiO2 System., J. Biomed Mater Res., 54, 608-618, (2000).

DOI: https://doi.org/10.1002/1097-4636(20010315)54:4<608::aid-jbm180>3.0.co;2-u

[59] P. Saravanapavan, and L. L. Hench, Mesoporous Calcium Silicate Glasses. I. Synthesis, Journal of Non-Crystalline Solids, 318 (2003), 1-13.

DOI: https://doi.org/10.1016/s0022-3093(02)01864-1

[60] P. Saravanapavan, and L. L. Hench, Mesoporous Calcium Silicate Glasses. II. Textural Characterisation, Journal of Non-Crystalline Solids, 318 (2003), 14-26.

DOI: https://doi.org/10.1016/s0022-3093(02)01882-3

[61] P. Saravanapavan, J. R. Jones, R. S. Pryce, and L. L. Hench, Bioactivity of Gel-Glass Powders in the CaO-SiO2 System: A Comparison with Ternary (CaO-P2O5-SiO2) and Quaternary Glasses (SiO2-CaO-P2O5-Na2O), Journal of Biomedical Materials Research Part A, 66A (2003).

DOI: https://doi.org/10.1002/jbm.a.10532

[62] R. C. Atwood, J. R. Jones, P. D. Lee, and L. L. Hench, Analysis of Pore Interconnectivity in Bioactive Glass Foams Using X-Ray Microtomography, Scripta Materialia, 51 (2004), 1029-33.

DOI: https://doi.org/10.1016/j.scriptamat.2004.08.014

[63] J. R. Jones and L. L. Hench, Factors Affecting the Structure and Properties of Bioactive Foam Scaffolds for Tissue Engineering, Journal of Biomedical Materials Research Part B-Applied Biomaterials, 68B (2004), 36-44.

DOI: https://doi.org/10.1002/jbm.b.10071

[64] J. E. Gough, J. R. Jones, and L. L. Hench, Nodule Formation and Mineralisation of Human Primary Osteoblasts Cultured on a Porous Bioactive Glass Scaffold, Biomaterials, 25 (2004), 2039.

DOI: https://doi.org/10.1016/j.biomaterials.2003.07.001

[46] [65] J. R. Jones, L. M. Ehrenfried, and L. L. Hench, Optimising Bioactive Glass Scaffolds for Bone Tissue Engineering, Biomaterials, 27 (2006), 964-73.

DOI: https://doi.org/10.1016/j.biomaterials.2005.07.017

[66] M. M. Pereira, J. R. Jones, R. L. Orefice, L. L. Hench, Preparation of bioactive glass-polyvinyl alcohol hybrid foams by the sol-gel method, Journal of Materials Science: Materials in Medicine, 16 (2005) 1045 - 1050.

DOI: https://doi.org/10.1007/s10856-005-4758-8

[67] J. R. Jones, P. D. Lee, L. L. Hench, Hierarchical Porous Materials for Tissue Engineering, Philosophical Transactions of the Royal Society A 364 (2006) 263-281.

[68] R. F. S. Lenza, W. L. Vasconcelos, J. R. Jones, and L. L. Hench, Surface-Modified 3d Scaffolds for Tissue Engineering, Journal of Materials Science-Materials in Medicine, 13 (2002), 837-42.

[69] P. Sepulveda, J. R. Jones, and L. L. Hench, Bioactive Sol-Gel Foams for Tissue Repair, Journal of Biomedical Materials Research, 59 (2002), 340-48.

DOI: https://doi.org/10.1002/jbm.1250

[70] J. R. Jones, O. Tsigkou, E. E. Coates, M. M. Stevens, J. M. Polak, L. L. Hench, Extracellular matrix formation and mineralization of on a phosphate-free porous bioactive glass scaffold using primary human osteoblast(HOB) cells, Biomaterials, (2007).

DOI: https://doi.org/10.1016/j.biomaterials.2006.11.022

[71] Effect of Bioglass® Repeat Dosage on Mineralization of Embryonic Bone In Vitro, J. Maroothynaden and L. L. Hench, Key Engineering Materials Vols. 192-195: 575-588 , TransTech Publications, Switzerland (2001).

DOI: https://doi.org/10.4028/www.scientific.net/kem.192-195.585

[72] L. L. Hench, and J. M. Polak, Third-Generation Biomedical Materials, Science, 295 (2002), 1014-1017.