Rationale of Using Conventional Sol-Gel Derived SiO2 for Delivery of Biologically Active Agents


Article Preview

Progress in the research of mesoporous materials, hierarchical pore structures, chemical modification of surfaces, nanoparticle processing and hybrid materials is important and it provides new and interesting functional properties for silica structures. However, this has also left the conventional, alkoxy-based sol-gel derived silica in the shadow, although it has a lot of non-utilized potential, especially in the delivery and/or encapsulation of sensitive biologically active agents like viral vectors, proteins, nucleic acids and cells. The potential lies in the versatile possibilities to adjust the structure by using alkoxides as precursors and in the proper use of water in different steps of the processing. The conventional, alkoxy-based sol-gel silica structure can be processed so that it results in largely variable biodegradation rates, biodegradation-controlled release of encapsulated agents and beneficial environment even for highly sensitive agents. These kinds of silica structures contain more or less water and hence, they are more or less labile from the traditional viewpoint of materials science. In extreme case they could be called “unfinished silica”. The aim of this paper is to discuss how the biodegradation rate of these kinds of silica materials can be adjusted on a large scale and how this is related to a rather narrow scale adjustment of in vitro dissolution rate of silica, how the unfinished silica structures can be controlled and their properties adjusted, how they can be utilized in the delivery of biologically active agents, and what the potential problems to be solved are.



Edited by:

Maria Vallet-Regí




M. Jokinen et al., "Rationale of Using Conventional Sol-Gel Derived SiO2 for Delivery of Biologically Active Agents", Key Engineering Materials, Vol. 377, pp. 195-210, 2008

Online since:

March 2008




[1] T. Graham: Journal of the Chemical Society of London Vol. 17 (1864), p.318.

[2] H. Rupprecht: Pharm. Ind. Vol. 36(4) (1974), p.260.

[3] H. Rupprecht, K.K. Unger and M. J. Biersack: Coll. Polym. Sci. Vol. 255(3) (1977), p.276.

[4] K.K. Unger, H. Rupprecht, B. Valentin and W. Kircher: Drug Dev. Ind. Pharm. Vol. 9 (1983), p.69.

[5] M. L. Lovrecich, European Patent EP336014 (1989).

[6] D. Avnir, S. Braun, O. Lev and M. Ottolenghi: Chem. Mater. Vol. 6 (1994), p.1605.

[7] I. Gill and A. Ballesteros: TIBTECH Vol. 18 (2000), p.282.

[8] I. Gill: Chem. Mater. Vol. 13 (2001), p.3404.

[9] J. Livage, T. Choradin and C. Roux: J. Phys. Condens. Matter Vol. 13 (2001), p. R673.

[10] H. Böttcher and K-H. Kallies, German Patent DE4416001 (1997).

[11] P. Ducheyne, S. Radin and E.M. Santos, U.S. Patent 5, 591, 453. (1997).

[12] M. Vallet-Regí, F. Balas and D. Arcos: Angew. Chem. Int. Ed. Vol. 46 (2007), p.7548.

[13] M. Ahola, H. Fagerholm, I. Kangasniemi, J. Kiesvaara, P. Kortesuo, K. Kurkela, N. Saarinen and A. Yli-Urpo, PCT Publication WO97/45367 (1997).

[14] M. Jokinen, R. Viitala and H. Jalonen, PCT Publication WO2005/082781 (2005).

[15] R. Viitala, M. Jokinen, S. Tuusa, J.B. Rosenholm and H. Jalonen: J. Sol-Gel Sci. Tech. Vol. 36 (2005), p.147.

[16] R. Viitala, M. Jokinen, S-L. Maunu, H. Jalonen, J.B. Rosenholm: J. Non-Cryst. Sol. Vol. 351 (2005), p.3225.

[17] R. Viitala, M. Jokinen and J.B. Rosenholm: Int. J. Pharm. Vol. 336 (2007), p.382.

[18] T. Choradin, M. Boissiere and J. Livage: Current Med. Chem. Vol 13 (2006), p.99.

[19] M. Koskinen, E. Säilynoja, M. Ahola, H. Jalonen, J. Salonen and V-M. Kähäri, PCT Publication WO02/80977 (2002).

[20] M. Koskinen, M. Toriseva, M. Jokinen, H. Jalonen, J. Salonen, and V-M. Kähäri: Molecular Therapy Vol. 11, Suppl. 1 (2005), p. S422.

[21] M. Jokinen, M. Koskinen and H. Jalonen, International Patent Application PCT/FI2007/000136 (2007).

[22] T. Choradin and J. Livage: Acc. Chem. Res., Vol. 40 (9) (2007), p.819.

[23] D-M. Liu and I-W. Chen, U.S. Patent 6, 303, 290 (2001).

[24] M-L. Ferrer, L. Yuste, F. Rojo and F. del Monte: Chem. Mater Vol. 15 (2003), p.3614.

[25] C.J. Brinker and G.W. Scherer: Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing (Academic Press, Inc. 1990).

[26] W. Lai, J. Carino and P. Ducheyne: Biomaterials Vol. 23 (2002), p.213.

[27] R.K. Iler: The Chemistry of Silica: Solubility, Polymerization, Colloid and Surface Properties, and Biochemistry (John Wiley & Sons, Inc. 1979).

[28] P. Kortesuo, M. Ahola P. Kortesuo, M. Ahola, S. Karlsson, I. Kangasniemi, A. Yli-Urpo and J. Kiesvaara: Biomaterials Vol. 21 (2000), p.193.

DOI: https://doi.org/10.1016/s0142-9612(99)00148-9

[29] P. Kortesuo, M. Ahola, S. Karlsson, I. Kangasniemi, J. Kiesvaara and A. Yli-Urpo: J. Biomed. Mat. Res. Vol. 44 (1999), p.162.

DOI: https://doi.org/10.1002/(sici)1097-4636(199902)44:2<162::aid-jbm6>3.0.co;2-p

[30] Seventeenth Report of the Joint FAO/WHO Expert Committee on Food Additives, Wld Hlth Org. Techn. Rep. Ser., No. 539 (1974).

[31] L.L. Hench and J.M. Polak: Science Vol. 295 (2002), p.1014.

[32] M. Jokinen, T. Peltola, S. Veittola, M. Ahola, P. Kortesuo, PCT Publication WO00150345 (2000).

[33] T. Peltola, M. Jokinen, S. Veittola, A. Yli-Urpo, PCT Publication WO01/40556 (2001).

[34] M. Jokinen, T. Peltola, S. Veittola, H. Rahiala and J.B. Rosenholm: J. Eur. Cer. Soc. Vol. 20(11) (2000), p.1739.

[35] T. Peltola, M. Jokinen, S. Veittola, H. Rahiala and A. Yli-Urpo: Biomaterials Vol. 22(6) (2001), p.589.

[36] T. Peltola, M. Jokinen, S. Veittola, J. Simola and A. Yli-Urpo: J. Biomed. Mat. Res. Vol. 54 (2001), p.579.

[37] B.V. Derjaguin and L.D. Landau , Acta Physicochim., U.S.S.R., Vol. 14 (1941). P. 633.

[38] E.J.W. Verwey and Th.G. Overbeek , Theory of the Stability of Lyophobic Colloids (Elsevier, 1948).

[39] M-A. Einarsrud: J. Non-Cryst. Solids Vol. 225 (1998), p.1.