Clinical Use of Bioactive Glasses for Maxillo-Facial Repair


Article Preview

Autogenous bone grafts are considered to be the gold standard in maxillo-facial surgery. However, drawbacks of donor site morbidity and unpredictable rates of resorbtion often limit their use. In vivo tests have shown that 45S5 bioactive glass particles placed in critical size bone defects lead to regeneration of new bone that has the structural characteristics and architecture of mature trabecular bone. In vitro tests using primary osteoblast cultures have shown that the bioactive glass particles release ionic dissolution products that provide genetic stimuli that control osteoblast cell cycles and lead to rapid growth of mineralized bone nodules. These in vitro and in vivo results led to approval of use of bioactive glass particles and monolithic bioactive glass implants for use in maxillo-facial reconstructions after removal of bone cysts and trauma, as described by several case histories.



Edited by:

Maria Vallet-Regí




I. Thompson and L. L. Hench, "Clinical Use of Bioactive Glasses for Maxillo-Facial Repair", Key Engineering Materials, Vol. 377, pp. 73-84, 2008

Online since:

March 2008




[1] Urist, M. R., Mikulski, A., & Boyd, S.D. A chemosterilized antigen extracted autodigested alloimplant for bone banks, Arch. Surg. Vol. 110 pp.416-427 (1975).


[2] Sennerby, L & Lundgren, S. Histologic aspects of stimultaneous implant and graft placement' In: 'The Sinus Bone Graft, Jensen O.T. (Ed), Quintessence Chapter 8 (1998).

[3] Aspenberg, P., Kalebo, P., Alberktsson, T. Rapid bone healing delay by bone matrix implantation, Int. J. Oral Maxillofac. Implants 3, pp.123-127 (1988).

[4] Oberg. S. & Rosenquist, J.B. Bone healing after implantation of hydroxyapatite granules and blocks (Interpore 200) combined with autolyzed antigen extracted allogenic bone and fibrin glue', Int. J. Oral. Maxillofac. Surg. 23, pp.110-114 (1994).


[5] Hollinger, J.O., Schmitz, J.P., Mark, D.E., & Seyfer, A.E. Osseous wound healing with xenogenic bone implants with a biodegradable carrier, Surgery 107 pp.50-54 (1990).

[6] Schmitz, J.P. & Hollinger, J.O. The critical size defect as an experimental model for craniomandibulofacial nonunions, Clin. Orthop. Rel. Res. 205 pp.299-308 (1986).


[7] Hollinger, J.O. & Kleinschmidt, J.C. The critical size defect as an experimental model to test bone repair materials, J. Craniofacial Surg. 1 pp.60-68 (1990).


[8] Jensen, O.T. Greer R.O., Johnson, L., Kassebaum, D. Vertical guided bone grafts augmentation in a new canine mandibular model, Int. J. Oral Maxillofac Implants 7 pp.62-71 (1995).

[9] Nishibori, M, Betts, N.J., Salama, H. & Listgarten, M.A. Short term healing of autogenous and allogenic bone grafts after sinus augmentation: A report of 2 Cases, J. Periodontol, 65 pp.958-966 (1994).


[10] Oonishi H, Kushitani S, et al. Bone growth into spaces between 45S5 Bioglass granules. In: Bioceramics, Volume 7 (Proceedings of the 7 th International Symposium on Ceramics in Medicine, Turku, Finland, July 1994). Ed: Andersson OH, Yli-Urpo A. Butterworth-Heinemann Ltd 1994: Vol 7: 139-144 (1994).


[11] Oonishi, H, Kin, N., Wakitani, S., Imoto, K., Hench, L. Wilson, J. Sugihara. T, Tsuji, E. Comparison of bone growth behavior into spaces between different bioceramic materials of various sizes, 9 th Cimtec World forum on new materials symposium XI materials in clinical applications P. Vincenzini Eds Techna, Sri, pp.411-418 (1999).


[12] Kent, J.N., Quinn, J.H., Zide, M.F. et al Correction of alveolar ridge deficiencies with nonresorbable hydroxyapatite, J. Am. Dent. Assoc. 105 p.993 (1982).

[13] Griffiths, J.R. New hydroxyapatite ceramic materials 'Potential use for bone induction and alveolar ridge augmentation, J. Prosthet. Dent. 53 p.109 (1985).


[14] Silverberg, M. Singh, M. Gans, B et al Polyglycolic acid mesh contained hydroxylapatite for augmentation of bone in the rat, Proc. 9 th Int. Conf. Oral. Maxillofac. Surg. 145 p.52 (1986).

[15] Gongloff, R.K. Montgomery, C.K. Lee, R. et al, Collagen tubes: Role in subperiosteal contour augmentation, Int. J. Oral. Maxillo. Surg. 15 p.669 (1986).


[16] Barsan, R. E & Kent J.N. Hydroxylapatite reconstruction of alveolar ridge deficiency with an open technique-a preliminary report, Oral Surg. 59 p.113 (1985).


[17] Gongloff R.K., Use of collagen tube contained implants of particulate hydroxyapatite for ridge augmentation, J. Oral & Maxillofac. Surg. 46 (8) pp.641-647 (1988).


[18] Collins, T.A. Use of collagen tubes containing particulate hydroxlapatite for augmentation of the edentulous atrophic maxilla: A preliminary report, J. Oral Maxillofac. Surg. 47, (2), pp.137-141 (1989).


[19] Blonk, M.S., Kent. J.N., Ardoin, R.C. et al Mandibular augmentation in dogs with hydroxylapatite combined with demineralized bone, J. Oral Maxillofac. Surg. 45 p.414 (1987).

[20] Hench, L. and Polak,J. A Genetic Basis for Development of new Biomedical Materials, Science, (2001).

[21] Thompson, I. & Hench, L. Medical application of composites, In Comprehensive Composite Materials (2000) Eds Kelly, A. & Zweben, C. Elsevier Science Vol 6 Pages 727-753.


[22] Thompson, I. & Hench, L. Mechanical properties of bioactive glasses, glass-ceramics and composites, Proc. Inst. Mech. Engrs, Vol. 212 part H. pp.127-136 (1998).


[23] Chan, C., Thompson, I., Robinson, P., Wilson, J. & Hench,L. Evaluation of a Bioglass - dextran composite as a bone graft substitute, I.J. Oral Maxillofac. Surg. Vol 31, pp.73-77 (2002).


[24] Wheeler , D.L., Eschbach , E.J., Hoellrich , R.G., Montfort, M.J., Chamberland, D.L. Assessment of resorbable bioactive material for grafting of critical-size cancellous defects, J Orthop Res. 2000 Jan ; 18 (1): 140-8 10716290.