Magnesium- and Zinc-Substituted Beta-Tricalcium Phosphates as Potential Bone Substitute Biomaterials


Article Preview



Edited by:

Maria Vallet-Regí




A. Ito and R. Z. LeGeros, "Magnesium- and Zinc-Substituted Beta-Tricalcium Phosphates as Potential Bone Substitute Biomaterials", Key Engineering Materials, Vol. 377, pp. 85-98, 2008

Online since:

March 2008




[1] Albee FH (1920). Studies in bone growth. Triple calcium phosphate as a stimulus to osteogenesis. Ann Surg 71: 32-36.

[2] Nery EB, Lynch KI, Hirthe WM, Mueller KH (1975). Bioceramic implants in surgically produced infrabony defects. J Periodont46: 328-339.

DOI: 10.1902/jop.1975.46.6.328

[3] Hubbard W (1974). Physiological Calcium Phosphate as Orthopedic Material. PhD Thesis. Marguette University.

[4] LeGeros RZ (1988). Calcium phosphate materials in restorative dentistry: A review. Adv Dent Res 2: 164-180.

[5] Nery EB, LeGeros RZ, Lynch KI, Lee K. (1992). Tissue response to biphasic calcium phosphate ceramic with different ratios of HA/βTCP in periodontal osseous defects. J Periodontol 63: 729-735.

DOI: 10.1902/jop.1992.63.9.729

[6] LeGeros RZ, Daculsi G, Nery E, Lynch K, Kerebel B (1988). In vivo transformation of biphasic calcium phosphates of varying βTCP/HA ratios: ulstrastructural characterization. Third World Biomaterials Congress, April 21-25, Kyoto, Japan.

[7] LeGeros RZ, Daculsi G (1990). In vivo transformation of biphasic calcium phosphate ceramics. In: Yamamuro T, Hench L, Wilson-Hench J(eds). CRC Press: Boca Raton, pp.17-28.

[8] Daculsi G (1988). Biphasic calcium phosphate concept applied to artificial bone, implant coating and injectable bone substitute. Biomaterials 19: 1473-1478.

DOI: 10.1016/s0142-9612(98)00061-1

[9] Daculsi G, LeGeros RZ (in press). Biphasic calcium phosphates. In: Encyclopedia of Biomaterials and Biomedical Engineering. Volume 2. Bowlin GL, Wnek G (eds). Taylor and Fracis Books Dekker: New York.

[10] Aoki, H, Kato K, Ogiso M (1977). Studies on the application of apatite to dental materials. J Dent Eng 18: 86-89, (1977).

[11] Metzger DS, Driskell TD, Paulsrud JR (1982). Tricalcium phosphate ceramic - A resorbable bone implant: Review and current status. J Am Dent Assoc 105: 1035-1038.

DOI: 10.14219/jada.archive.1982.0408

[12] Jarcho M. Calcium phosphate ceramics as hard tissue prosthetics (1981). Clin Orthopaed Res 157: 259-278.

DOI: 10.1097/00003086-198106000-00037

[13] deGroot K (1983). Bioceramics of Calcium Phosphate. Boca Raton, FL: CRC Press.

[14] Clarke SA, Hoskins NL, Jordan GR, Marsh DR. Healing of an ulnar defect using a propriety TCP bone graft substitute, JAXTM, in association with autologous osteogenic cells and growth factors. Bone 2007; 40: 939-947.

DOI: 10.1016/j.bone.2006.11.004

[15] Knop C, Sitte J, Canto F, Reinhold M, Blauth M (2006). Successful posterior interlaminar fusion at the thoracic spine by sole use of beta-tricalcium phosphate. Archi Orthopaed Trauma Surg 126: 204-210.

DOI: 10.1007/s00402-006-0107-8

[16] Hirata M, Murata M, Takashita H, Sakabe T, Tsuji Y, Kubo T (2006) Use of purified betatricalcium phosphate for filling defects after curettage of benign bone tumors. Internatl Orthopaed 30: 510-513.

DOI: 10.1007/s00264-006-0156-1

[17] Zerbo IR, Bronckers ALJJ, deLange G, Burger EH. Localization of osteogenic and osteoclastic cells in porous β-tricalcium phosphate particles used for human maxillary sinus floor elevation. Biomaterials 2005; 26: 1445-1451.

DOI: 10.1016/j.biomaterials.2004.05.003

[18] LeGeros RZ (1967). Crystallographic Studies on the Carbonate Substitution in the Apatite Structure. PhD Thesis. New York Unversity.

[19] LeGeros RZ (1991). Calcium Phosphates in Oral Biology and Medicine. Monographs in Oral Sciences. Vol 15. Karger: Basel.

[20] Schroeder LW, Dickens B, Brown WE (1977). Crystallographic studies of the role of Mg as a stabilizing impurity in β-Ca3(PO4)2 II. Refinement of Mg-containing β-Ca3(PO4)2. J solid State Chem 22: 253-262.

DOI: 10.1016/0022-4596(77)90002-0

[21] Rowles SL (1968). The precipitation of whitlockite from aqueous solutions. Bull Soc Chim Fr 1968: 802.

[22] Schroeder HE (1969). Formation and Inhibition of Dental Calculus. Hans Berne Publisher: Vienna.

[23] Brown WE, Chow LC (1981). Thermodynamics of apatite crystal growth and dissolution. J Crystal growth 53: 31-41.

DOI: 10.1016/0022-0248(81)90053-1

[24] LeGeros RZ, Daculsi G, Kijkowska R, Kerebel B (1989). The effect of magnesium on the formation of apatites and whitlockites. In Itokawa, Durlach J (Eds). Magnesium in Health and Disease. John Libbey & Co: London, pp.11-19.

[25] Famery R, Richard N, Boch P. Preparation of β- and α-tricalcium phosphate ceramics, with and without magnesium addition. Ceramics International 1994; 20: 327-336.

DOI: 10.1016/0272-8842(94)90050-7

[26] Terpstra RA, Driessens FCM, Schaeken HG, Verbeeck RMH (1983). The whitlockite phase in the system CaO-P2O5-MgO at 1000 °C. Z Znorg Allg Chem 507: 206-212.

DOI: 10.1002/zaac.19835071226

[27] Jarcho M, Salsbury RL, Thomas MB, Doremus RH (1979). Synthesis and fabrication of βtricalcium phosphate (whitlockite) ceramics for potential prosthetic applications. J. Mater Sci 14: 142-150.

DOI: 10.1007/bf01028337

[28] Akao M, Aoki H, Kato K, Sato A (1982). Dense polycrystalline β-tricalcium phosphate for prosthetic applications. J Mater Sci 17: 343-346.

DOI: 10.1007/bf00591468

[29] LeGeros RZ, Lin S, Rohanizadeh R. Mijares D, LeGeros JP (2003). Biphasic calcium phosphate bioceramics: preparation, properties and applications. J Mater Sci: Mater Med 14: 201-209.

DOI: 10.4028/

[30] Sader M, Dos Santos E, LeGeros R, Soares G (in press). Influence of magnesium on densification of beta tricalcium phosphate tablets. Biomaterials.

[31] Layrolle P, LeBugle A (1994). Characterization and reactivity of nanosized calcium phosphates prepared in anhydrous ethanol. Cham Mater 6: 1996-(2004).

DOI: 10.1021/cm00047a019

[32] LeGeros RZ, Shirra WP, Miravite MA, LeGeros JP (1973). Amorphous calcium phosphates: Synthetic and biological. Coll Int. CNRS, No. 230: Physico-chimie et cristallographie d'intérêt biologique. CNRS: Paris, pp.105-115.

[33] LeGeros RZ (1981). Apatites in biological systems. Prog. Crystal growth Charact 4: 1-45.

[34] LeGeros RZ, Contiguglia SR, Alfrey AC (1973).

[36] LeGeros RZ, Bleiwas CB, Retino M, Rohanizadeh R, LeGeros JP (1999). Zinc effect on the in vitro formation of calcium phosphates: Relevance to clinical inhibition of calculus formation. Am J Dent 12: 65-70.

[37] Dickens B, Schroeder LW, Brown WE (1974). Crystallographic studies of the role of Mg as a stabilizing impurity in β-Ca3(PO4)2 I. The crystal structure of pure β-Ca3(PO4)2. J Solid State Chem 10: 232-248.

DOI: 10.1016/0022-4596(74)90030-9

[38] Enderle R, Götz-Neunhoeffer F, Göbbels M, Müller FA, Greil P (2005). Influence of magnesium doping on the phase transformation temperature of β-TCP ceramics examined by Rietveld refinement. Biomaterials 26: 3379-3384.

DOI: 10.1016/j.biomaterials.2004.09.017

[39] Gregory TM, Moreno EC, Patel JM, Brown WE (1974). Solubility of β-Ca3(PO4)2 in the system Ca(OH)2-H3PO4-H2O at 5, 15, 25 and 37°C. J Res Natl Bur Standard A. Physics and Chemistry 78A: 667-674.

DOI: 10.6028/jres.078a.042

[40] Vereecke G, Lemaître J (1990). Calculation of the solubility diagrams in the system Ca(OH)2H3PO4-KOH-HNO3-CO2-H2O. J Crystal Growth104: 820-832.

DOI: 10.1016/0022-0248(90)90108-w

[41] Chow LC (2001). Solubility of calcium phosphates. In: Chow LC, Eans ED (eds. ) Octacalcium Phosphate. Monograph in Oral Sciences. Vol. 18. Karger: Basel pp.94-111.

DOI: 10.1159/000061650

[42] Wiltfang J, Merten HA, Schlegel KA, Schultze-Mosgau S, Kloss FR, Rupprecht S, Kessler P (2002). Degradation characteristics of α and β- tricalcium phosphate (TCP) in minipigs. J Biomed Mater Res (Appl Biomater)63: 115-121.

DOI: 10.1002/jbm.10084

[43] von Doernberg MC, von Rechenberg B, Bohner M, Grünenfelder S, van Lenthe GH, Müller R, Gasser B, Mathys R, Baroud G, Auer J (2006). In vivo behavior of calcium phosphate scaffolds with four different pore sizes. Biomaterials 2006; 27: 5186-5198.

DOI: 10.1016/j.biomaterials.2006.05.051

[44] Bucholz RW (2002). Nonallograft osteoconductive bone graft substitutes. Clin Orthop Related Res 2002; 395: 44-52.

DOI: 10.1097/00003086-200202000-00006

[45] Osborn JF, Newesely H (1980). The materials science of calcium phosphate ceramics. Biomaterials 1: 108-111.

[46] LeGeros RZ (1993). Biodegradation and bioresorption of calcium phosphate ceramics. Clin Mater 14: 65-88.

DOI: 10.1016/0267-6605(93)90049-d

[47] Huangfu X, Zhao J (2007). Tendon-bone healing enhancement using injectable tricalcium phosphate in a dog anterior cruciate ligament reconstruction model. Arthoros 23: 55-62.

DOI: 10.1016/j.arthro.2006.12.031

[48] Mayr HO, Hube R, Berstein A, Seibt AB, Hein W, von Eisenhart-Rothe (2007). Beta-tricalcium phosphate plugs for press-fit fixation in ACL reconstruction - a mechanical analysis in bovine bone. Knee 14: 239-244.

DOI: 10.1016/j.knee.2007.01.006

[49] Uemura T, Dong J, Wang Y, Kojima H, Saito T, Iejima D, Kikuchi M, Tanaka J, Tateishi T. (2003) Transplantation of cultured bone cells using combinations of scaffolds and culture techniques. Biomaterials 24: 2277-2286.

DOI: 10.1016/s0142-9612(03)00039-5

[50] Takahashi Y, Yamamoto M, Tabata Y (2005). Osteogenic differentiation of mesenchymal stem cells in biodegradable sponges composed of gelatin and β-tricalcium phosphate. Biomaterials 26: 3587-3596.

DOI: 10.1016/j.biomaterials.2004.09.046

[51] Lind M, Overgaard S, Glerup H, Søballe K, Bünger C (2001). Transforming growth factor-β adsorbed to tricalciumphosphate coated implants increase peri-implant bone remodeling. Biomaterials ; 22: 189-193.

DOI: 10.1016/s0142-9612(00)00165-4

[52] Urist MR, Lietze A, Dawson E (1984). Beta-tricalcium phosphate delivery system for bone morphogenetic protein. Clin Orthop Relat Res 187: 277-280.

DOI: 10.1097/00003086-198407000-00042

[53] Zhang Y, Zhang M. Calcium phosphate/chitosan composite scaffolds for controlled in vitro antibiotic drug release. J Biomed Mater Res 2002; 62: 378-386.

DOI: 10.1002/jbm.10312

[54] Clement D, Tristan JM, Hamad M, Roux P, Heughebaert (1989). Etude de la substitution Mg 2+ /Ca2+ dans l'orthophosphate tricalcique β. J Solid State Chem78: 271-280.

DOI: 10.1016/0022-4596(89)90108-4

[55] LeGeros RZ (1974). Variations in the crystalline components of human dental calculus. I. Crystallographic and spectroscopic methods of analysis. J Dent Res 53: 45-50.

DOI: 10.1177/00220345740530012801

[56] Bigi A, Foresti E, Gandolfi M, Gazzano M, Roveri N (1997). Isomorphous substitutions in βtricalcium phosphate: The different effects of zinc and strontium. J Inorg Biochem 66: 259-265.

[57] Kreidler ER, Hummel FA (1967). Phase equilibria in the system Ca3(PO4)2-Zn3(PO4)2. Inorganic Chem 6: 524-528.

[58] Layrolle P, Ito A, Tateishi T (1996). Sol-gel synthesis of zinc-containing calcium phosphate biomaterials. Phosphorus Res Bull 6: 63-66.

DOI: 10.3363/prb1992.6.0_63

[59] Ando J (1958). Phase diagrams of Ca3(PO4)2-Mg3(PO4)2 and Ca3(PO4)2-CaNaPO4 system. Bull chem. Soc Japan 31: 201-205.

DOI: 10.1246/bcsj.31.201

[60] CaO-MgO-P2O5 in Phase diagrams for ceramists. Levin EM, Robbins CR, McMurdie HF, Reser MK (eds). The Ajnerican Ceramic Society 1965, p.214.

[61] CaO-ZnO-P2O5 in Phase diagrams for ceramists 1969 supplement. Levin Em, Robbins CR, McMurdie HF, Reser MK (eds). The American Ceramic Society 1969, p.136.

[62] Sogo Y, Ito A, Kamo M, Sakurai T, Onuma K, Ichinose, Otsuka M (2004). Hydrolysis and cytocompatibility of zinc-containing �-tricalcium phosphate powder. Mater Sci Engineer C 24: 709-715.

DOI: 10.1016/j.msec.2004.08.016

[63] Ito A, Kawamura H, Miyakawa S, Layrolle P, Kanzaki N, Treboux G, Onuma K, Tsutsumi S (2002). Resorbability and solubility of zinc-containing tricalcium phosphate. J. Biomed Mater Res 60: 224-231.

DOI: 10.1002/jbm.10068.abs

Fetching data from Crossref.
This may take some time to load.