High Cycle Fatigue Behavior of Magnesium Alloys under Corrosive Environment


Article Preview

The high cycle fatigue characteristics of magnesium alloys under low humidity, high humidity (80% RH) and sprayed 5%NaCl solution environments have been introduced. Fatigue limit of bulk magnesium alloy was significantly reduced even under high humidity condition, while other structural materials such as steel and aluminum alloy showed no influence of humidity on fatigue limit. The reduction of fatigue limit under 5% NaCl environments was much larger than that under high humidity environment. The remarkable reduction of fatigue limit under corrosive environments was attributed to the formation of corrosion pit, which was induced by simultaneous action of mechanical loading and corrosive environment. To improve the reduced fatigue strength under corrosive environment, coating used to apply on the surface. Non-chromium chemical conversion coating showed superior effect on the improvement of fatigue strength under corrosive environment compared to anodized coating. Fatigue strengths of the coated and painted AZ61 alloy under high humidity and 5%NaCl environments showed almost the same fatigue strength as bulk material under low humidity.



Key Engineering Materials (Volumes 378-379)

Edited by:

Dr. T. S. Srivatsan, FASM, FASME




Y. Mutoh et al., "High Cycle Fatigue Behavior of Magnesium Alloys under Corrosive Environment", Key Engineering Materials, Vols. 378-379, pp. 131-146, 2008

Online since:

March 2008




[1] R. VanFleteren: Adv. Mater. Processes, Vol. 33 (1996), p.149.

[2] F. Kaumle, N. C. Toemmeraas and J.A. Bolstad: Society of Automotive Engineers, (Tech. Paper Series, 850420P, 1985).

[3] B.L. Mordike, T. Ebert : Mater. Sci. Engng A Vol. 302 (2000), pp.37-45.

[4] W. Unsworth: Light Metal Age, (Aug. 1987) 10.

[5] H.J. Gough: Corrosion fatigue of metals, J. Inst. Metals, Vol . 49(1932), pp.17-92.

[6] D. J. McAdam, Jr., G. W. Geil: Pitting and its effect on fatigue limit of steels corroded under various conditions, Proc. Am. Soc. Testing Mater. Vol. 41(1941), pp.696-701.

[7] B. B. Wescott: Fatigue and corrosion fatigue of steels, Mech. Engng. Vol. 60 (1938), pp.813-829.

[8] T. Magnin, D. Desijardins and M. Puiggali: Corrosion Sci. Vol. 29 (1989), pp.567-576.

[9] M. P. Mueller: Corrosion Vol. 38 (1982), pp.431-437.

[10] H. H. Uhlig, in: OF. Devereux, A.J. McEvily, R.W. Steahle (Eds. ), NACE-2, Corrosion Fatigue National Association of Corrosion Engineers, Houston, TX, 1971, p.270.

[11] Z. B. Sajuri, Y. Miyashita and Y. Mutoh: Effect of humidity and temperature on the fatigue behavior of an extruded AZ61 magnesium alloy, Fatigue Fract. Engng Mater. Struct. Vol. 28 (2005), p.373.

DOI: https://doi.org/10.1111/j.1460-2695.2005.00775.x

[12] M. Hilpert and L. Wagner: Corrosion Fatigue Behavior of the High-Strength Magnesium Alloy AZ80, J. Mater. Engng and Performance. Vol. 9 (4) (2000), pp.402-407.

[13] Ya. Unigovski, A. Eliezer, E. Abramov, Y. Snir and E. M. Gutman: Corrosion Fatigue of Extruded magnesium alloys, Mater. Sci. Eng. A. Vol. 360 (2003), pp.132-139.

DOI: https://doi.org/10.1016/s0921-5093(03)00409-x

[14] S. A. Khan, Doctoral Thesis, Fatigue Behavior of Magnesium Alloys under Ambient and Corrosive Environments, Nagaoka University of Technology, 2007, pp.6-3.

[15] Z. B. Sajuri, Doctoral Thesis, Study of Fatigue Behavior of Magnesium Alloys, Nagaoka University of Technology, 2005, p.32.

[16] D. W. Hoeppner: ASTM STP 675, ASTM, Philadelphia, (1979), p.841.

[17] Z. B. Sajuri, U. Takashi, Y. Miyashita and Y. Mutoh: Fatigue life prediction of Magnesium alloys for Structural Applications, Advanced engineering materials, Vol. 5, No 12 (2003), pp.910-916.

DOI: https://doi.org/10.1002/adem.200300510

[18] Y. Kondo: Prediction of fatigue crack initiation life based on pit growth, Corrosion, Vol. 45, pp.7-11.

[19] M. Hilpert and L. Wagner: Effect of mechanical surface treatment and environment on fatigue behavior of wrought magnesium alloys, in: Proceedings of the International Congress: Magnesium 2000, Magnesium Alloys and Their Applications, (2000).

DOI: https://doi.org/10.1002/3527607552.ch74

[20] A, Eliezer, E.M. Gutman, E. Abramov, E. Aghion: Corrosion fatigue and mechanochemical behavior of magnesium alloys, in: B.L. Mordike(Ed. ), Corrosion Reviews, Special Issue on Corrosion Resistance of Magnesium alloys, Vol. 16(1-2), Freund Publication House Ltd, London, (1998).

DOI: https://doi.org/10.1515/corrrev.1998.16.1-2.1

[21] Chih-Kuang Lin, and Sheng-Tseng Yang: Corrosion fatigue behavior of 7050 Aluminum alloys under different tempers, Engineering Frac. Mechanics, Vol. 59 (1998), pp.779-795.

DOI: https://doi.org/10.1016/s0013-7944(97)00173-2

[22] K. Tokaji and S. Takahashi: Corrosion fatigue behavior and fracture mechanisms in nitrided low alloy steel, Fatigue Fract Engng Mater Struct, Vol. 26 (2002), pp.215-221.

DOI: https://doi.org/10.1046/j.1460-2695.2003.00572.x

[23] G. S Chen, D.J. Duquette: Metallurgical Transactions A, Vol. 23A (1992), pp.1563-1572.

[24] M. Rebiere, T. Magnin: Mater. Sci. Engng. A, Vol. 128 (1990), pp.99-106.

[25] L.V. Corsetti, D.J. Duquette: Metallurgical Transactions, Vol. 5 (1974), pp.1087-1093.

[26] C.P. Dervenis, E.I. Meletis, R.F. Hochman: Mater. Sci. EngngA., Vol. 102 (1988), pp.151-160.

[27] J.E. Gray, B. Luan: Protective coating on magnesium alloys-a critical review, journal of alloys and Compounds, Vol. 336 (2002), pp.88-113.

DOI: https://doi.org/10.1016/s0925-8388(01)01899-0

[28] S. A Khan, Y. Miyashita, Y. Mutoh, T. Koike: Effect of anodized layer thickness on fatigue behavior of Magnesium alloy, Mater. Sci. Eng. A, doi: 10. 1016/j. msea2007. 04. 078, (2007).

DOI: https://doi.org/10.1016/j.msea.2007.04.078

[29] A.M. Cree, G.W. Weidmann: Effect of anodized coatings on fatigue crack growth rates in aluminum alloy, Surface Engineering, Vol. 13 (1) (1997), pp.51-55.

DOI: https://doi.org/10.1179/sur.1997.13.1.51