Some Applications of Fractal Fracture Mechanics to Describe the Fatigue Behaviour of Materials


Article Preview

As is well-known, fatigue limit, threshold stress intensity range and fatigue crack growth rate are influenced by the specimen or structure size. Limited information on size effect is available in the literature. In the present paper, by employing some concepts of fractal geometry, new definitions of fatigue limit, fracture energy and stress intensity factor, based on physical dimensions different from the classical ones, are discussed. Then, size-dependent laws for fatigue limit, threshold stress intensity range and fatigue crack growth rate are proposed. Some experimental results are examined in order to show how to apply such theoretical scaling laws.



Key Engineering Materials (Volumes 378-379)

Edited by:

Dr. T. S. Srivatsan, FASM, FASME






A. Carpinteri et al., "Some Applications of Fractal Fracture Mechanics to Describe the Fatigue Behaviour of Materials", Key Engineering Materials, Vols. 378-379, pp. 355-370, 2008

Online since:

March 2008




[1] A.A. Griffith: The phenomenon of rupture and flow in solids (Philosophical Trans Royal Soc. A221, 1921).

[2] R.E. Peterson: Jnl Applied Mechanics Vol. 1 (1933), p.79.

[3] W. Weibull: A statistical theory for the strength of materials (Swedish Royal Institute for Engineering Research, Stockholm 1939).

[4] Al. Carpinteri: Int. J. Solids Struct. Vol. 25 (1989), p.407.

[5] Al. Carpinteri: Int Jnl Solids Struct. Vol. 31 (1994), p.291.

[6] G.P. Cherepanov, A.S. Balankin, V.S. Ivanova: Engng Fracture Mechs Vol. 51 (1995), p.997.

[7] Al. Carpinteri, B. Chiaia: Int Jnl of Fract. Vol. 76 (1996), p.327.

[8] Al. Carpinteri, B. Chiaia: Chaos, Solitons & Fractals Vol. 8 (1997), p.135.

[9] B.B. Mandelbrot: The fractal geometry of nature (W.H. Freeman and Company, New York 1982).

[10] K. Falconer: Fractal geometry: mathematical foundations and applications (Wiley, Chichester 1990).

[11] K.G. Wilson: Phys Rev. B4 (1971), p.3174.

[12] G.I. Barenblatt: Similarity, self-similarity and intermediate asymptotics (Consultants Bureau, New York 1979).

DOI: 10.1007/978-1-4615-8570-1_1

[13] H.J. Herrmann, S. Roux (Editors): Statistical models for the fracture of disordered media (North-Holland, Amsterdam 1990).

[14] G.I. Barenblatt, L.R. Botvina: Fatigue Fract. Engng Mater. Struct. Vol. 3 (1980), p.193.

[15] An. Carpinteri, A. Spagnoli, S. Vantadori: Fatigue Fracture Engng Maters Structs Vol. 25 (2002), p.619.

[16] An. Carpinteri, A. Spagnoli: Int. J. Fatigue Vol. 26 (2004), p.125.

[17] A. Spagnoli: Chaos, Solitons & Fractals Vol. 22 (2004), p.589.

[18] K. Hatanaka, S. Shimizu, A. Nagae: Bulletin of JSME Vol. 26 (1983), p.1288.

[19] N.E. Frost, in: Proceedings of the First International Conference on Fracture, edited by T. Yokobori/The Japan Society for Strength and Fracture of Materials, Sendai (1966).

[20] Y. Murakami, M. Endo, in: Publication 1 of the European Group of Fracture, Mechanical Engineering Publications, London (1986).

[21] Z.P. Bazant, K. XU: ACI Maters Jnl. Vol. 88 (1991), p.390.

[22] Z.P. Bazant, J. Planas: Fracture and size effect in concrete and other quasibrittle materials (CRC Press, New York 1998).

[23] Z.P. Bazant, W.F. Shell: ACI Mater Jnl. Vol. 90 (1993), p.472.

[24] B.B. Mandelbrot, D.E. Passoja, A.J. Paullay: Nature Vol. 308 (1984), p.721.

[25] J. Weiss: Engng Fracture Mechs Vol. 68 (2001), p. (1975).

[26] W.N. Findley: J. Mech. Engng Sci. Vol. 14 (1972), p.424.

[27] H.M. Westergaard: Jnl Applied Mechanics Vol. 6 (1939), p.49.

[28] G.R. Irwin: Jnl Applied Mechanics Vol. 24 (1957), p.109.

[29] M.H. El Haddad, T.H. Topper, K.N. Smith: Engng Fracture Mechs Vol. 11 (1979), p.573.

[30] P.C. Paris and F. Erdogan: Jnl Basic Engrg 85D (1963), p.528.

In order to see related information, you need to Login.