A Study of Fatigue (Cyclic Deformation) Behavior in FCC Metals Using Strain Rate Change Tests


Article Preview

Strain rate jump tests were performed during low cycle fatigue using plastic strain rate as the real time computed control variable. Test materials included OFE polycrystalline copper, AA7075-T6 aluminum, and 304 stainless steel. The evolution of dislocation interactions was observed by evaluating the activation area and true stress as a function of cumulative plastic strain. Activation area values for each of the three materials were evaluated from an initial state to saturation. All three materials exhibit a deviation from Cottrell-Stokes law during cyclic deformation. Tests performed on each of the three materials at saturation reveal a dependence of activation area on plastic strain amplitude for copper and aluminum but no such relationship for stainless steel. These results reflect a contrast between wavy slip for pure copper and 7075 aluminum versus planar slip for 304 stainless steel tested at room temperature. Dislocation motion in copper transitions from forest dislocation cutting [1-6] to increasing contributions of cross slip. Dislocation motion in 7075 aluminum and 304 stainless steel is controlled by obstacles that are characteristically more thermal than forest dislocations: obstacles in 7075-T6 aluminum are identified as solutes from re-dissolved particles; obstacles in 304 stainless steel are also solutes.



Key Engineering Materials (Volumes 378-379)

Edited by:

Dr. T. S. Srivatsan, FASM, FASME




G. C. Kaschner and J. C. Gibeling, "A Study of Fatigue (Cyclic Deformation) Behavior in FCC Metals Using Strain Rate Change Tests", Key Engineering Materials, Vols. 378-379, pp. 371-384, 2008

Online since:

March 2008




[1] Biberger, M. and J.C. Gibeling, Analysis of creep transients in pure metals following stress changes. Acta Metall. Mater., 1995. 43: pp.3247-60.

DOI: https://doi.org/10.1016/0956-7151(95)00052-w

[2] Mulford, R.A., Acta Metall., 1979. 27: p.1115.

[3] Yaney, D.L., J.C. Gibeling, and W.D. Nix, Acta Metall., 1987. 35: p.1391.

[4] Saimoto, S. and H. Sang, Acta Metall., 1983. 31: p.1873.

[5] Saimoto, S. and M.S. Duesberry, Acta Metall., 1984. 32: p.147.

[6] Gibeling, J., J. Holbrook, and W. Nix, Critical Analysis of the Determination of Deformation Mechanisms by Strain Rate Change Tests. Acta Metall., 1984. 32(9): p.1287.

DOI: https://doi.org/10.1016/0001-6160(84)90074-9

[95] [7] Haasen, P., Phil. Mag. A, 1958. 3: p.384.

[8] Kocks, U.F. and H. Mecking. in Dislocation Modeling of Physical Systems. 1981: Pergammon, Oxford.

[9] Basinski, Z.S., Thermally activated glide in face-centred cubic metals and its application to theory of strain hardening. Phil. Mag. , 1959. 4(40): pp.393-432.

DOI: https://doi.org/10.1080/14786435908233412

[10] Basinski, Z.S., P.J. Jackson, and M.S. Duesberry, Transients in steady-state plastic deformation porduced by changes of strain rate. Phil. Mag., 1977. 36(2): pp.255-263.

DOI: https://doi.org/10.1080/14786437708244933

[11] Feltner, C.E. and C. Laird, Cyclic stress-strain response of f. c. c. metals and alloys - II. Dislocation structures and mechanisms. Acta Metall., 1967. 15(10): pp.1633-53.

DOI: https://doi.org/10.1016/0001-6160(67)90138-1

[12] Wang, R. and H. Mughrabi, Mater. Sci. Eng., 1984. 63: p.147.

[13] Mughrabi, H. in Seventh International Conference on Strength of Metals and Alloys. 1986: Pergammon, Oxford.

[14] Mughrabi, H., Mater. Sci. Eng., 1978. 33: p.207.

[15] Mughrabi, H., J. Phys. IV, 1993. 3: p.659.

[16] Christ, H. -J., et al. in Fatigue under Thermal and Mechanical Loading: Mechanisms, Mechanics and Modeling. 1996: Kluwer Academic Publishers, Netherlands.

[17] Kocks, U.F., A.S. Argon, and M.F. Ashby, Progress in Materials Science, 1975. 19: p.1.

[18] Nix, W.D. and J.C. Gibeling. in Flow and Fracture at Elevated Temperatures. 1985: American Society of Metals, Metals Park, Ohio.

[19] Feltner, C.E. and C. Laird, Cyclic stress-strain response of f. c. c. metals and alloys-I. Phenomenological experiments Acta Metall., 1967. 15(10): pp.1621-32.

DOI: https://doi.org/10.1016/0001-6160(67)90137-x

[20] Mughrabi, H. in Fifth International Conference on the Strength of Metals and Alloys. 1980: Pergammon Press, Oxford.

[21] Mughrabi, H., Acta Metall., 1983. 31: p.1367.

[22] Gibeling, J.C. and T.H. Alden, Strain Rate Continuity in Aluminum and Al - Mg. Mater. Sci. Engng., 1986. 79(1): pp.47-53.

[23] Holbrook, J., J.C. Swearengen, and R.W. Rohde, eds. Mechanical testing for deformation model development, ed. R.W. Rohde and J.C. Swearengen. 1981, American Society for Testing and Materials: Philadelphia. 80.

DOI: https://doi.org/10.1520/stp28882s

[24] Carlone, M. and S. Saimoto, Precision strain rate sensitivity measurement using the stepramp method. Exp. Mech., 1996. 36: pp.360-6.

[25] Champion, H.G., M.S. Duesberry, and S. Saimoto, Elimination of machine transient effects during plastic strain rate changes. Scripta Metall., 1983. 17(1): pp.135-40.

DOI: https://doi.org/10.1016/0036-9748(83)90086-8

[26] Dunham, D.P. and J.C. Gibeling, Strain rate continuity in 304 stainless steel during stress rate change tests. Acta Metall., 1989. 37(10): pp.2651-8.

DOI: https://doi.org/10.1016/0001-6160(89)90298-8

[27] Brown, S.B. and V.R. Dave, Test machine and control system interactions in the evaluation of rate-dependent metal flow. Engr. Mater. Tech., 1993. 115(2): pp.179-186.

DOI: https://doi.org/10.1115/1.2904204

[28] Dunham, D.P. and J.C. Gibeling, Thermally and mechanically activated dislocation glide: Experimental results and theoretical analysis. Acta Metall., 1993. 41(4): pp.1173-82.

DOI: https://doi.org/10.1016/0956-7151(93)90165-o

[29] Hart, E.W. and H. Garmestani, Exp. Mech., 1993. 33: p.1.

[30] Gibeling, J.C. and T.H. Alden, Observation of Plastic Strain Rate Continuity in Iron in and near the Athermal Plateau,. Acta Metall., 1984. 32(11): pp.2069-75. 31. Kaschner, G.C. and J.C. Gibeling, Scripta Mater., 1996. 35: p.1397.

DOI: https://doi.org/10.1016/0001-6160(84)90186-x

[32] Kaschner, G.C. and J.C. Gibeling, Evolution of dislocation glide kinetics during cyclic deformation of copper. Acta Mater., 2002. 50: pp.653-662.

DOI: https://doi.org/10.1016/s1359-6454(01)00362-7

[33] Bayerlein, M., H. -J. Christ, and H. Mughrabi, Plasticity-induced martensitic transformation during cyclic deformation of AISI-304L stainless steel. Mater. Sci. Eng., 1989. 114: p. L11- L16.

DOI: https://doi.org/10.1016/0921-5093(89)90871-x

[34] Krempl, E., Mech. Phys. Solid., 1979. 27: p.363.

[35] Meininger, J.M., S.L. Dickerson, and J.C. Gibeling, Fatigue Fract. Eng. Mater. Struct., 1996. 19: p.85.

[36] Li, P., N.J. Marchand, and B. Ilschner, Mater. Sci. Eng. A, 1989. 119: p.41.

[37] Rao, K.B.S., et al., Metall. Trans., 1993. 24A: p.913.

[38] Renard, A., et al., Mater. Sci. Eng., 1983. 60: p.113.

[39] Sanders, T.H. and E.A. Starke, Metall. Trans., 1976. 7A: p.1407.

[40] Sanders, T.H., D.A. Mauney, and J.T. Staley. in Fundamental Aspects of Structural Alloy Design. 1977: Plenum Press, New York.

[41] Zauter, R., et al., eds. Thermomechanical Fatigue Behavior of Materials. Thermomechanical Fatigue Behavior of Materials, ed. H. Sehitoglu. 1993, American Society for Testing and Materials, Philadelphia, PA. 70.

DOI: https://doi.org/10.1520/stp1186-eb

[42] Mughrabi, H. and R. Wang. in Second Risø International Symposium on Metallurgy and Materials Science. 1981. Risø National Laboratory: Risø, Denmark.

[43] Llanes, L. and C. Laird, Mater. Sci. Eng., 1993. 161: p.1.

[44] Jain, M., J. Mater. Res., 1990. 5: p. (2079).

[45] Zauter, R., H. -J. Christ, and H. Mughrabi, Metall. Mater. Trans., 1994. 25: p.407.

[46] Walley, J., personal communication, (2007).

[47] Kaschner, G.C. and J.C. Gibeling, A Study of the mechanisms of cyclic deformation in f. c. c. metals using strain rate change tests. Mat. Sci. Eng. A, 2002. 336: pp.170-176.

[48] Robles, J., et al., Metall. Mater. Trans., 1994. 25: p.2235.

[49] Mecking, H. and U.F. Kocks, Acta Metall., 1981. 29: p.1865.

[50] Laird, C. and L. Buchinger, Metall. Trans., 1985. 16A: p.2201.

[51] Llanes, L. and C. Laird, Fatigue Fract. Eng. Mater. Struct., 1993. 16: p.165.

[52] Figueroa, J.C., et al., The cyclic stress-strain response of copper at low strains. I. Constant amplitude testing. Acta Metall., 1981. 29(10): pp.1667-78.

DOI: https://doi.org/10.1016/0001-6160(81)90001-8

[53] Bonneville, J. and B. Escaig, Cross-slipping process and the stress-orientation dependence in pure copper. Acta Mater., 1979. 27: pp.1477-86.

DOI: https://doi.org/10.1016/0001-6160(79)90170-6

[54] Kuhlmann-Wilsdorf, D. and C. Laird, Mater. Sci. Eng., 1979. 37: p.111.

[55] Polmear, I.J. Deformation of Polycrystals: Mechanisms and Microstructures. in Second Risø International Symposium on Metallurgy and Materials Science. 1981. Risø National Laboratory: Risø, Denmark.

[56] Conrad, H., Thermally activated deformation of metals. J. Met., 1964. 16(7): pp.582-88.