A Study of Fatigue (Cyclic Deformation) Behavior in FCC Metals Using Strain Rate Change Tests

Abstract:

Article Preview

Strain rate jump tests were performed during low cycle fatigue using plastic strain rate as the real time computed control variable. Test materials included OFE polycrystalline copper, AA7075-T6 aluminum, and 304 stainless steel. The evolution of dislocation interactions was observed by evaluating the activation area and true stress as a function of cumulative plastic strain. Activation area values for each of the three materials were evaluated from an initial state to saturation. All three materials exhibit a deviation from Cottrell-Stokes law during cyclic deformation. Tests performed on each of the three materials at saturation reveal a dependence of activation area on plastic strain amplitude for copper and aluminum but no such relationship for stainless steel. These results reflect a contrast between wavy slip for pure copper and 7075 aluminum versus planar slip for 304 stainless steel tested at room temperature. Dislocation motion in copper transitions from forest dislocation cutting [1-6] to increasing contributions of cross slip. Dislocation motion in 7075 aluminum and 304 stainless steel is controlled by obstacles that are characteristically more thermal than forest dislocations: obstacles in 7075-T6 aluminum are identified as solutes from re-dissolved particles; obstacles in 304 stainless steel are also solutes.

Info:

Periodical:

Key Engineering Materials (Volumes 378-379)

Edited by:

Dr. T. S. Srivatsan, FASM, FASME

Pages:

371-384

DOI:

10.4028/www.scientific.net/KEM.378-379.371

Citation:

G. C. Kaschner and J. C. Gibeling, "A Study of Fatigue (Cyclic Deformation) Behavior in FCC Metals Using Strain Rate Change Tests", Key Engineering Materials, Vols. 378-379, pp. 371-384, 2008

Online since:

March 2008

Export:

Price:

$35.00

[1] Biberger, M. and J.C. Gibeling, Analysis of creep transients in pure metals following stress changes. Acta Metall. Mater., 1995. 43: pp.3247-60.

DOI: 10.1016/0956-7151(95)00052-w

[2] Mulford, R.A., Acta Metall., 1979. 27: p.1115.

[3] Yaney, D.L., J.C. Gibeling, and W.D. Nix, Acta Metall., 1987. 35: p.1391.

[4] Saimoto, S. and H. Sang, Acta Metall., 1983. 31: p.1873.

[5] Saimoto, S. and M.S. Duesberry, Acta Metall., 1984. 32: p.147.

[6] Gibeling, J., J. Holbrook, and W. Nix, Critical Analysis of the Determination of Deformation Mechanisms by Strain Rate Change Tests. Acta Metall., 1984. 32(9): p.1287.

DOI: 10.1016/0001-6160(84)90074-9

[95] [7] Haasen, P., Phil. Mag. A, 1958. 3: p.384.

[8] Kocks, U.F. and H. Mecking. in Dislocation Modeling of Physical Systems. 1981: Pergammon, Oxford.

[9] Basinski, Z.S., Thermally activated glide in face-centred cubic metals and its application to theory of strain hardening. Phil. Mag. , 1959. 4(40): pp.393-432.

DOI: 10.1080/14786435908233412

[10] Basinski, Z.S., P.J. Jackson, and M.S. Duesberry, Transients in steady-state plastic deformation porduced by changes of strain rate. Phil. Mag., 1977. 36(2): pp.255-263.

DOI: 10.1080/14786437708244933

[11] Feltner, C.E. and C. Laird, Cyclic stress-strain response of f. c. c. metals and alloys - II. Dislocation structures and mechanisms. Acta Metall., 1967. 15(10): pp.1633-53.

DOI: 10.1016/0001-6160(67)90138-1

[12] Wang, R. and H. Mughrabi, Mater. Sci. Eng., 1984. 63: p.147.

[13] Mughrabi, H. in Seventh International Conference on Strength of Metals and Alloys. 1986: Pergammon, Oxford.

[14] Mughrabi, H., Mater. Sci. Eng., 1978. 33: p.207.

[15] Mughrabi, H., J. Phys. IV, 1993. 3: p.659.

[16] Christ, H. -J., et al. in Fatigue under Thermal and Mechanical Loading: Mechanisms, Mechanics and Modeling. 1996: Kluwer Academic Publishers, Netherlands.

[17] Kocks, U.F., A.S. Argon, and M.F. Ashby, Progress in Materials Science, 1975. 19: p.1.

[18] Nix, W.D. and J.C. Gibeling. in Flow and Fracture at Elevated Temperatures. 1985: American Society of Metals, Metals Park, Ohio.

[19] Feltner, C.E. and C. Laird, Cyclic stress-strain response of f. c. c. metals and alloys-I. Phenomenological experiments Acta Metall., 1967. 15(10): pp.1621-32.

DOI: 10.1016/0001-6160(67)90137-x

[20] Mughrabi, H. in Fifth International Conference on the Strength of Metals and Alloys. 1980: Pergammon Press, Oxford.

[21] Mughrabi, H., Acta Metall., 1983. 31: p.1367.

[22] Gibeling, J.C. and T.H. Alden, Strain Rate Continuity in Aluminum and Al - Mg. Mater. Sci. Engng., 1986. 79(1): pp.47-53.

[23] Holbrook, J., J.C. Swearengen, and R.W. Rohde, eds. Mechanical testing for deformation model development, ed. R.W. Rohde and J.C. Swearengen. 1981, American Society for Testing and Materials: Philadelphia. 80.

DOI: 10.1520/stp28882s

[24] Carlone, M. and S. Saimoto, Precision strain rate sensitivity measurement using the stepramp method. Exp. Mech., 1996. 36: pp.360-6.

[25] Champion, H.G., M.S. Duesberry, and S. Saimoto, Elimination of machine transient effects during plastic strain rate changes. Scripta Metall., 1983. 17(1): pp.135-40.

DOI: 10.1016/0036-9748(83)90086-8

[26] Dunham, D.P. and J.C. Gibeling, Strain rate continuity in 304 stainless steel during stress rate change tests. Acta Metall., 1989. 37(10): pp.2651-8.

DOI: 10.1016/0001-6160(89)90298-8

[27] Brown, S.B. and V.R. Dave, Test machine and control system interactions in the evaluation of rate-dependent metal flow. Engr. Mater. Tech., 1993. 115(2): pp.179-186.

DOI: 10.1115/1.2904204

[28] Dunham, D.P. and J.C. Gibeling, Thermally and mechanically activated dislocation glide: Experimental results and theoretical analysis. Acta Metall., 1993. 41(4): pp.1173-82.

DOI: 10.1016/0956-7151(93)90165-o

[29] Hart, E.W. and H. Garmestani, Exp. Mech., 1993. 33: p.1.

[30] Gibeling, J.C. and T.H. Alden, Observation of Plastic Strain Rate Continuity in Iron in and near the Athermal Plateau,. Acta Metall., 1984. 32(11): pp.2069-75. 31. Kaschner, G.C. and J.C. Gibeling, Scripta Mater., 1996. 35: p.1397.

DOI: 10.1016/0001-6160(84)90186-x

[32] Kaschner, G.C. and J.C. Gibeling, Evolution of dislocation glide kinetics during cyclic deformation of copper. Acta Mater., 2002. 50: pp.653-662.

DOI: 10.1016/s1359-6454(01)00362-7

[33] Bayerlein, M., H. -J. Christ, and H. Mughrabi, Plasticity-induced martensitic transformation during cyclic deformation of AISI-304L stainless steel. Mater. Sci. Eng., 1989. 114: p. L11- L16.

DOI: 10.1016/0921-5093(89)90871-x

[34] Krempl, E., Mech. Phys. Solid., 1979. 27: p.363.

[35] Meininger, J.M., S.L. Dickerson, and J.C. Gibeling, Fatigue Fract. Eng. Mater. Struct., 1996. 19: p.85.

[36] Li, P., N.J. Marchand, and B. Ilschner, Mater. Sci. Eng. A, 1989. 119: p.41.

[37] Rao, K.B.S., et al., Metall. Trans., 1993. 24A: p.913.

[38] Renard, A., et al., Mater. Sci. Eng., 1983. 60: p.113.

[39] Sanders, T.H. and E.A. Starke, Metall. Trans., 1976. 7A: p.1407.

[40] Sanders, T.H., D.A. Mauney, and J.T. Staley. in Fundamental Aspects of Structural Alloy Design. 1977: Plenum Press, New York.

[41] Zauter, R., et al., eds. Thermomechanical Fatigue Behavior of Materials. Thermomechanical Fatigue Behavior of Materials, ed. H. Sehitoglu. 1993, American Society for Testing and Materials, Philadelphia, PA. 70.

DOI: 10.1520/stp1186-eb

[42] Mughrabi, H. and R. Wang. in Second Risø International Symposium on Metallurgy and Materials Science. 1981. Risø National Laboratory: Risø, Denmark.

[43] Llanes, L. and C. Laird, Mater. Sci. Eng., 1993. 161: p.1.

[44] Jain, M., J. Mater. Res., 1990. 5: p. (2079).

[45] Zauter, R., H. -J. Christ, and H. Mughrabi, Metall. Mater. Trans., 1994. 25: p.407.

[46] Walley, J., personal communication, (2007).

[47] Kaschner, G.C. and J.C. Gibeling, A Study of the mechanisms of cyclic deformation in f. c. c. metals using strain rate change tests. Mat. Sci. Eng. A, 2002. 336: pp.170-176.

[48] Robles, J., et al., Metall. Mater. Trans., 1994. 25: p.2235.

[49] Mecking, H. and U.F. Kocks, Acta Metall., 1981. 29: p.1865.

[50] Laird, C. and L. Buchinger, Metall. Trans., 1985. 16A: p.2201.

[51] Llanes, L. and C. Laird, Fatigue Fract. Eng. Mater. Struct., 1993. 16: p.165.

[52] Figueroa, J.C., et al., The cyclic stress-strain response of copper at low strains. I. Constant amplitude testing. Acta Metall., 1981. 29(10): pp.1667-78.

DOI: 10.1016/0001-6160(81)90001-8

[53] Bonneville, J. and B. Escaig, Cross-slipping process and the stress-orientation dependence in pure copper. Acta Mater., 1979. 27: pp.1477-86.

DOI: 10.1016/0001-6160(79)90170-6

[54] Kuhlmann-Wilsdorf, D. and C. Laird, Mater. Sci. Eng., 1979. 37: p.111.

[55] Polmear, I.J. Deformation of Polycrystals: Mechanisms and Microstructures. in Second Risø International Symposium on Metallurgy and Materials Science. 1981. Risø National Laboratory: Risø, Denmark.

[56] Conrad, H., Thermally activated deformation of metals. J. Met., 1964. 16(7): pp.582-88.

In order to see related information, you need to Login.