A Dissipated Energy Approach to Fatigue Crack Growth in Ductile Solids and Layered Materials


Article Preview

This paper summarizes recent work on a new theory of fatigue crack growth in ductile solids based on the total plastic energy dissipation per cycle ahead of the crack. The fundamental hypothesis of the theory proposes a unified criterion for crack extension under monotonic and fatigue loading, so that the fatigue crack growth rate is given explicitly in terms of the total plastic dissipation per cycle and the monotonic fracture properties of the material. The total plastic dissipation per cycle is obtained by 2-D elastic-plastic finite element analysis of a stationary crack under constant amplitude loading, for both mode I (C(T)) and general mixed-mode I/II specimen geometries. Both elastic-perfectly plastic and bi-linear kinematic hardening constitutive behaviors are considered, and numerical results for a dimensionless plastic dissipation per cycle are presented over a wide range of relevant mechanical properties and mixed-mode loading conditions. Results are further extended to include fatigue delamination of layered material systems, where either discrete mismatches or a continuous grading of mechanical properties can exist across the interface.



Key Engineering Materials (Volumes 378-379)

Edited by:

Dr. T. S. Srivatsan, FASM, FASME






N. Klingbeil et al., "A Dissipated Energy Approach to Fatigue Crack Growth in Ductile Solids and Layered Materials", Key Engineering Materials, Vols. 378-379, pp. 385-404, 2008

Online since:

March 2008




[1] N. W. Klingbeil, A total dissipated energy theory of fatigue crack growth in ductile solids, International Journal of Fatigue, vol. 25, pp.117-128, (2003).

DOI: 10.1016/s0142-1123(02)00073-7

[2] J. S. Daily and N. W. Klingbeil, Plastic dissipation in fatigue crack growth under mixed-mode loading, International Journal of Fatigue, vol. 26, pp.727-738, (2004).

DOI: 10.1016/j.ijfatigue.2003.11.004

[3] J. Daily and N. W. Klingbeil, Plastic dissipation in mixed-mode fatigue crack growth along plastically mismatched interfaces, International Journal of Fatigue, vol. 28, pp.1725-1738, (2006).

DOI: 10.1016/j.ijfatigue.2006.01.012

[4] J. R. Rice, Mechanics of crack tip deformation and extension by fatigue, Fatigue Crack Propagation, ASTM STP 415, pp.247-311, (1967).

DOI: 10.1520/stp47234s

[5] K. N. Raju, An energy balance criterion for crack growth under fatigue loading from considerations of energy of plastic deformation, International Journal of Fracture Mechanics, vol. 8, no. 1, pp.1-14, (1972).

DOI: 10.1007/bf00185193

[6] J. Weertman, Theory of fatigue crack growth based on a BCS crack theory with work hardening, International Journal of Fracture, vol. 9, no. 2, pp.125-131, (1973).

DOI: 10.1007/bf00041854

[7] T. Mura and C. T. Lin, Theory of fatigue crack growth for work hardening materials, International Journal of Fracture, vol. 10, pp.284-287, (1974).

DOI: 10.1007/bf00113937

[8] S. R. Bodner, D. L. Davidson, and J. Lankford, A description of fatigue crack growth in terms of plastic work, Engineering Fracture Mechanics, vol. 17, no. 2, pp.189-191, (1983).

DOI: 10.1016/0013-7944(83)90169-8

[9] E. T. Moyer, Jr. and G. C. Sih, Fatigue analysis of an edge cracked specimen: Hysteresis strain energy density, Engineering Fracture Mechanics, vol. 19, no. 2, pp.643-652, (1984).

DOI: 10.1016/0013-7944(84)90097-3

[10] D. Kujawski and F. Ellyin, A fatigue crack propagation model, Engineering Fracture Mechanics, vol. 20, pp.695-704, (1984).

DOI: 10.1016/0013-7944(84)90079-1

[11] F. Ellyin, Crack growth rate under cyclic loading and effect of different singularity fields, Engineering Fracture Mechanics, vol. 25, pp.463-473, (1986).

DOI: 10.1016/0013-7944(86)90260-2

[12] G. C. Sih and D. Y. Jeong, Fatigue load sequence effect ranked by critical available energy density, Theoretical and Applied Fracture Mechanics, vol. 14, pp.141-151, (1990).

DOI: 10.1016/0167-8442(90)90007-m

[13] C. L. Chow and T. J. Lu, Cyclic J-integral in relation to fatigue crack initiation and propagation, Engineering Fracture Mechanics, vol. 39, no. 1, pp.1-20, (1991).

DOI: 10.1016/0013-7944(91)90018-v

[14] W. Wang and C. -T. T. Hsu, Fatigue crack growth rate of metal by plastic energy damage accumulation theory, Journal of Engineering Mechanics, vol. 120, no. 4, pp.776-795, (1994).

DOI: 10.1061/(asce)0733-9399(1994)120:4(776)

[15] R. P. Skelton, T. Vilhelmsne, and G. A. Webster, Energy criteria and cumulative damage during fatigue crack growth, International Journal of Fatigue, vol. 20, no. 9, pp.641-649, (1998).

DOI: 10.1016/s0142-1123(98)00027-9

[16] P. K. Liaw, S. I. Kwun, and M. E. Fine, Plastic work of fatigue propagation in steels and aluminum alloys, Metallurgical Transactions A, vol. 12A, pp.49-55, (1981).

DOI: 10.1007/bf02648507

[17] M. E. Fine and D. L. Davidson, Quantitative measurement of energy associated with a moving fatigue crack, Fatigue Mechanisms: Advances in Quantitative Measurement of Physical Damage, ASTM STP 811, pp.350-370, (1983).

DOI: 10.1520/stp30564s

[18] N. Ranaganathan, J. Petit, and J. de Fouquet, Energy required for fatigue crack propagation, in Proceedings of the 7th International Conference on Strength of Metals and Alloys, (Montreal Canada), pp.1267-1272, (1986).

[19] N. Ranganathan, N. Jendoubi, M. Benguediab, and J. Petit, Effect of R-ratio and ∆K level on the hysteretic energy dissipated during fatigue crack propagation, Scripta Metallurgica, vol. 21, pp.1045-1049, (1987).

DOI: 10.1016/0036-9748(87)90247-x

[20] Y. Birol, What happens to the energy input during fatigue crack propagation, Materials Science and Engineering, vol. A104, pp.117-124, (1988).

DOI: 10.1016/0025-5416(88)90412-0

[21] H. P. Stuwe and R. Pippan, On the energy balance of fatigue crack growth, Computers and Structures, vol. 44, no. 1-2, pp.13-17, (1992).

DOI: 10.1016/0045-7949(92)90218-o

[22] N. Ranganathan and J. R. Desforges, Equivalent constant amplitude concepts examined under fatigue crack propagation by block loading, Fatigue and Fracture of Engineering Materials and Structures, vol. 19, no. 8, pp.997-1008, (1996).

DOI: 10.1111/j.1460-2695.1996.tb01035.x

[23] N. Rajic, Y. C. Lam, and A. K. Wong, Evolved heat as a fatigue characterization parameter, Materials Science Forum, vol. 210-213, pp.463-470, (1996).

DOI: 10.4028/www.scientific.net/msf.210-213.463

[24] N. Ranganathan, Analysis of fatigue crack growth in terms of crack closure and energy, Advances in Fatigue Crack Closure Measurement and Analysis: Second Volume, ASTM STP 1343, pp.14-38, (1999).

DOI: 10.1520/stp15748s

[25] J. Qian and A. Fatemi, Mixed mode fatigue crack growth: a literature survey, Engineering Fracture Mechanics, vol. 55, no. 6, pp.969-990, (1996).

DOI: 10.1016/s0013-7944(96)00071-9

[26] D. L. Davidson, The energetics of fracture, in Morris E. Fine Symposium, pp.355-362, The Minerals, Metals and Materials Society, (1991).

[27] Hibbitt, Karlsson, Sorensen, and Inc., ABAQUS Theory Manual, (1999).

[28] F. Ellyin, Fatigue Damage, Crack Growth and Life Prediction. Chapman & Hall, New York, (1997).

[29] J. Daily, Dissipated Energy at a Bimaterial Crack Tip Under Cyclic Loading. PhD thesis, Wright State University, (2006).

[30] Damange tolerant design handbook, Tech. Rep. WL-TR-94-4052, (1994).

[31] N. W. Klingbeil and J. L. Beuth, Interfacial fracture testing of deposited metal layers under four point bending, Engineering Fracture Mechanics, vol. 56, no. 1, pp.113-126, (1997).

DOI: 10.1016/s0013-7944(96)00109-9

[32] N. W. Klingbeil and J. L. Beuth, Continuous delamination of sprayed deposits via applied curvature, International Journal of Mechanical Sciences, vol. 40, no. 1, pp.1-13, (1998).

DOI: 10.1016/s0020-7403(97)00026-x

[33] N. W. Klingbeil and J. L. Beuth, On the design of debond-resistant bimaterials part II: A comparison of free-edge and interface crack approaches, Engineering Fracture Mechanics, vol. 66, pp.111-128, (2000).

DOI: 10.1016/s0013-7944(00)00003-5

[34] Z. Suo and J. W. Hutchinson, Interface crack between two elastic layers, International Journal of Fracture, vol. 43, pp.1-18, (1990).

[35] P. G. Charalambides, J. Lund, A. G. Evans, and R. M. McMeeking, A test specimen for determining the fracture resistance of bimaterial interfaces, Journal of Applied Mechanics, vol. 56, pp.77-82, (1989).

DOI: 10.1115/1.3176069

[36] T. L. Anderson, Fracture Mechanics: Fundamentals and Applications. CRC Press LLC, Boca Raton, (1995).

[37] D. Yao, Z. Zhang, and J. K. Shang, An experimental technique for studying mixed-mode fatigue crack growth in solder joints, Transactions of the ASME: Journal of Electronic Packaging, vol. 118, pp.45-48, (1996).

DOI: 10.1115/1.2792130

[38] D. Yao and J. K. Shang, Effect of load-mix on fatigue crack growth in 63Sn−37Pb solder joints, Transactions of the ASME: Journal of Electronic Packaging, vol. 119, pp.114-118, (1997).

DOI: 10.1115/1.2792212

[39] X. X. Xu, A. D. Crocombe, and P. A. Smith, Mixed mode fatigue and fracture behaviour of joints bonded with either filled or filled and toughened adh esive, International Journal of Fatigue, vol. 17, no. 4, pp.279-286, (1995).

DOI: 10.1016/0142-1123(95)93540-i

[40] H. Nayeb-Hashami and P. Yang, Mixed mode I/II fracture and fatigue crack growth along 63Sn−37Pb solder/brass interface, International Journal of Fatigue, vol. 23, pp. S325-S335, (2001).

DOI: 10.1016/s0142-1123(01)00144-x

[41] M. Okazaki, M. Okamoto, and Y. Harada, Interfacial fatigue crack propagation in Ni-based superalloy protective coatings, Fatigue and Fracture of Engineering Materials and Structures, vol. 24, pp.885-865, (2001).

DOI: 10.1046/j.1460-2695.2001.00452.x

[42] M. M. A. Wahab, I. A. Ashcroft, A. D. Crocombe, and P. A. Smith, Numerical prediction of fatigue crack growth propagation lifetime in adhesively bonded structures, International Journal of Fatigue, vol. 24, pp.705-709, (2002).

DOI: 10.1016/s0142-1123(01)00173-6

[43] J. W. Hutchinson and Z. Suo, Mixed mode cracking in layered materials, Advances in Applied Mechanics, vol. 29, pp.63-191, (1992).

DOI: 10.1016/s0065-2156(08)70164-9

[44] N. W. Klingbeil and J. L. Beuth, On the design of debond-resistant bimaterials part I: Free-edge singularity approach, Engineering Fracture Mechanics, vol. 66, pp.93-110, (2000).

DOI: 10.1016/s0013-7944(00)00002-3

[45] D. D. Anderson, J. H. Jackson, J. S. Epstein, S. Ganti, and D. M. Parks, Constraint fracture in simulated weldments, Proceedings of the ASME Aerospace Division, vol. 52, pp.241-249, (1996).

[46] G. P. Mercier, Fatigue and Fracture Mechanics: 33rd Volume, ASTM STP 1417, ch. The effect of localized plasticity and crack tip constraint in undermatched welds, pp.328-359. ASTM International, West Conshohocken, PA, (2002).

DOI: 10.1520/stp11083s

[47] H. Zhang, Y. Zhang, L. Li, and X. Ma, Influence of weld mis matching on fatigue crack growth behaviors of electron beam welded joints, Materials Science and Engineering A, vol. A334, pp.141-146, (2002).

DOI: 10.1016/s0921-5093(01)01785-3

[48] H. Lee and Y. Kim, Interfacial crack tip constraints and J-integrals in plasticity mismatched bimaterials, Engineering Fracture Mechanics, vol. 68, no. 8, pp.1013-1031, (2001).

DOI: 10.1016/s0013-7944(01)00007-8

[49] H. Lee, Estimation of crack driving force on strength mismatched bi-material interfaces, Nuclear Engineering and Design, vol. 212, pp.155-164, (2002).

DOI: 10.1016/s0029-5493(01)00471-x

In order to see related information, you need to Login.