Numerical Simulation of Autogenous Shrinkage in High-Performance Cement Paste Based on a Multi-Component Hydration Model

Abstract:

Article Preview

Autogenous shrinkage is the term for the bulk deformation of a closed, isothermal, cement-based material system not subjected to external forces. It is associated with the internal volume reduction of cement/water mixture in the course of the hydration process. However, addition of blended components to cement, especially such as fly ash or silica fume, for the high-performance concrete will lead to a densification of the microstructure. The autogenous shrinkage deformation will increase and the following autogenous shrinkage crack will do harm to durability of concrete structure. In this paper, numerical simulation is suggested to predict autogenous shrinkage of high performance cement paste. The simulation is originated from a multicomponent hydration model. The numerical program considers the influence of water to cement ratio, curing temperature, particle size distribution, cement mineral components on hydration process and autogenous shrinkage. The prediction result agrees well with experiment result.

Info:

Periodical:

Key Engineering Materials (Volumes 385-387)

Edited by:

H.S. Lee, I.S. Yoon and M.H. Aliabadi

Pages:

629-632

DOI:

10.4028/www.scientific.net/KEM.385-387.629

Citation:

S. M. Lim et al., "Numerical Simulation of Autogenous Shrinkage in High-Performance Cement Paste Based on a Multi-Component Hydration Model", Key Engineering Materials, Vols. 385-387, pp. 629-632, 2008

Online since:

July 2008

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.