Integration Mechanisms towards Hard Tissue of Ca-Aluminate Based Biomaterials

Abstract:

Article Preview

Six mechanisms have been identified, which control how Ca-aluminate materials are integrated onto tissue; 1) Main reaction, the hydration step of CA, 2) Apatite formation in presence of phosphate ions in the biomaterial, 3) Apatite formation in the contact zone in presence of body liquid, 4) Transformation of hydrated Ca-aluminate into apatite and gibbsite, 5) Biological induced integration and ingrowth, i.e. bone formation at the contact zone, and 6) Mass increase reaction, especially important when un-hydrated CA is used as coatings or as augmentation pastes. These six mechanisms affect the integration differently depending on a) what type of tissue the biomaterial is in contact with, b) in what state (un-hydrated or hydrated) the CA is introduced, and c) what type of application is aimed at (cementation, dental fillings, endodontic fillings, sealants, coatings and augmentation products). Both a pure nanostructural mechanically controlled integration, and a chemically induced integration seem plausible.

Info:

Periodical:

Key Engineering Materials (Volumes 396-398)

Main Theme:

Edited by:

Marcelo Prado and Cecília Zavaglia

Pages:

183-186

DOI:

10.4028/www.scientific.net/KEM.396-398.183

Citation:

L. Hermansson et al., "Integration Mechanisms towards Hard Tissue of Ca-Aluminate Based Biomaterials", Key Engineering Materials, Vols. 396-398, pp. 183-186, 2009

Online since:

October 2008

Export:

Price:

$35.00

[1] L. Hermansson, L. Kraft and H. Engqvist: Key Eng. Mater. Vol. 247 (2003), 437-442.

[2] J. Li and L. Hermansson: J. Mater Sci 35 (2000), 5879-5883.

[3] H. Engqvist, T. Persson, J. Lööf, A. Faris, L. Hermansson: Trends in Biomaterials and Artificial Organs 21 (2) (2008) 98 - 106.

[4] J. Lööf, A. Faris, L. Hermansson, H. Engqvist: Key Eng Mater Vol 361 - 363 (2008) 369 - 372.

[5] J. Loof, H. Engqvist, K. Lindqvist, N-O. Ahnfelt, L. Hermansson: Journal of Materials Science: Materials in Medicine, Vol. 14, No. 12, (December 2003), 1033-1037.

[6] L. Kraft and L. Hermansson: Proc Amer. Ceram. Soc. Vol 23B, No 4 (2002).

[7] H. Engqvist, J-E. Schultz-Walz, J. Loof, G. A. Botton, D. Mayer, M. W. Phaneuf, N-O. Ahnfelt, L. Hermansson: Biomaterials 25 (2004), 2781-2787.

DOI: 10.1016/j.biomaterials.2003.09.053

[8] T. Jarmar, T. Uhlin, U. Höglund, P. Thomsen, L. Hermansson, H. Engqvist: Key Eng. Mater., Vols. 361-363 (2008), 373-376.

DOI: 10.4028/www.scientific.net/kem.361-363.373

[9] H. Engqvist, T. Jarmar, F. Svahn, L. Hermansson, P. Thomsen: Advances in Science and Technology, Vol. 49 (2006), 275-281.

DOI: 10.4028/www.scientific.net/ast.49.275

[10] A. Palmquist, T. Jarmar, L. Hermansson, L. Emanuelsson, A. Taylor, M Taylor, H Engqvist, P. Thomsen: submitted to J. Biomed. Mater. Res., Part B. Applied biomaterials (2008).

DOI: 10.1002/jbm.b.31380

[11] N. Axén, H. Engqvist, J. Lööf, P. Thomsen, L. Hermansson: Key Eng. Mater. Vols. 284-286 (2005), 831-834.

DOI: 10.4028/www.scientific.net/kem.284-286.831

In order to see related information, you need to Login.