Application of Complete Gurson Model for Prediction of Ductile Fracture in Welded Steel Joints

Abstract:

Article Preview

Ductile fracture process includes three stages: void nucleation, their growth and coalescence. The voids nucleate due to the fracture or separation of non-metallic inclusions and secondary-phase particles from the material matrix. Micromechanical models based on the Gurson plastic flow criterion are often used for analysis of ductile fracture. They consider the material as a porous medium in which the effect of voids on the stress-strain state and plastic flow cannot be neglected. Another important property of the Gurson criterion is that the hydrostatic stress component influences the plastic flow of the material.

Info:

Periodical:

Edited by:

Liviu MARSAVINA

Pages:

13-20

DOI:

10.4028/www.scientific.net/KEM.399.13

Citation:

B. Međo et al., "Application of Complete Gurson Model for Prediction of Ductile Fracture in Welded Steel Joints", Key Engineering Materials, Vol. 399, pp. 13-20, 2009

Online since:

October 2008

Export:

Price:

$35.00

[1] V. Tvergaard and A. Needleman: Acta Metallurgica Vol. 32 (1984), p.157.

[2] A.L. Gurson: Journal of Engineering Materials and Technology Vol. 99 (1977), p.2.

[3] J.R. Rice and D.M. Tracey: Journal of Mechanics and Physics of Solids Vol. 17 (1969), p.201.

[4] F.M. Beremin, in: Three-dimensional constitutive relations and ductile fracture, edited by S. Nemat- Nasser, North-Holland Publ (1981).

[5] Y. Huang: Trans ASME Vol. 58 (1991), p.1084.

[6] R. Chaouadi, P. De Meester and W. Vandermeulen: International Journal of Fracture Vol. 66 (1994) p.155.

[7] V. Tvergaard: International Journal of Fracture Vol. 17 (1981), p.389.

[8] M. Rakin, A. Sedmak, V. Grabulov, N. Gubeljak and Z. Cvijović, in: 9th International Conference on Mechanical Behaviour of Materials, Published on CD, Geneva (2003).

[9] W. Brocks: Numerical Round Robin on Micromechanical Models - Results, IWM-Bericht T 8/95, Fraunhofer Institut fuer Werkstoffmechanik (IWM), Freiburg, (1995).

[10] G. Bernauer and W. Brocks: Numerical Round Robin on Micro-Mechanical Models - Results (ESIS TC8, GKSS Research Center, Germany 2000).

[11] D.Z. Sun, D. Siegele, B. Voss and W. Schmitt: Fatigue and Fracture of Engineering Materials and Structures Vol. 12 (1989), p.201.

[12] P.F. Thomason: Ductile Fracture of Metals (Pergamon Press, UK, 1990).

[13] Z.L. Zhang, C. Thaulow and J. Odegard: Engineering Fracture Mechanics Vol. 67 (2000), p.155.

[14] I. Penuelas, C. Betegon, and J.J. del Coz: Engineering Fracture Mechanics Vol. 73 (2006), p.2756.

[15] GKSS: 1991. Displacement gauge system for applications in fracture mechanics, Patent Publication, Geesthacht, (1991).

[16] N. Gubeljak, I. Scheider, M. Kocak, M. Oblak and J. Predan, in: 14 European Conference on Fracture. EMAS Publ. (2002).

[17] K. H. Schwalbe: Basic engineering methods of fracture mechanics and fatigue (GKSSForschungszentrum, Germany, 2001).

[18] M. Rakin, N. Gubeljak, M. Dobrojević and A. Sedmak: Engineering Fracture Mechanics Vol. 75 (2008), p.3499.

DOI: 10.1016/j.engfracmech.2007.04.026

[19] M. Dobrojević, M. Rakin, N. Gubeljak, I. Cvijović, N. Krunich and A. Sedmak: Mater. Sci. Forum Vol. 555 (2007), p.571.

DOI: 10.4028/www.scientific.net/msf.555.571

[20] ASTM. Standard practice for determining inclusion content of steel and other metals by automatic image analysis (ASTM Standard E 1245-89, USA 1989).

[21] M. Rakin, Z. Cvijović, V. Grabulov, S. Putić and A. Sedmak: Engineering Fracture Mechanics Vol. 71 (2004), p.813.

DOI: 10.1016/s0013-7944(03)00013-4

In order to see related information, you need to Login.