Piezoelectric Ceramics for High Temperature Applications

Abstract:

Article Preview

Ceramic materials based on lead titanate, lead niobate and bismuth layer-structured ferroelectrics (BLSF) were studied to develop piezoelectric ceramics for high temperature sensor applications. Compositional modification enabled lead titanate and lead niobate type ceramics to exhibit good piezoelectric properties at 500°C . The Curie temperature for one BLSF, CaBi4Ti4O15 was close to 800°C, though the piezoelectric constant was smaller than those of lead titanate and lead niobate ceramics. These ceramics seem to be good candidates for use as high temperature sensor materials. In addition, textured SrBi2Nb2O9 (SBN), another BLSF, ceramics with various orientation factors were fabricated through the templated grain growth (TGG) method. The resonant frequency of 76% textured SBN varied linearly with temperature and exhibited stable temperature characteristics. The temperature coefficient of the resonant frequency was –0.85 ppm/°C from –50 to 250°C, and was smaller than that of a quartz oscillator. Therefore, textured SBN ceramics are suitable for use as a resonator material when stable resonant frequency is needed in a high temperature range.

Info:

Periodical:

Key Engineering Materials (Volumes 421-422)

Edited by:

Tadashi Takenaka, Hajime Haneda, Kazumi Kato, Masasuke Takata and Kazuo Shinozaki

Pages:

375-380

DOI:

10.4028/www.scientific.net/KEM.421-422.375

Citation:

Y. Higuchi et al., "Piezoelectric Ceramics for High Temperature Applications", Key Engineering Materials, Vols. 421-422, pp. 375-380, 2010

Online since:

December 2009

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.