Polarized Raman Study for Epitaxial PZT Thick Film with the Mixture Orientation of (100)/(001)

Abstract:

Article Preview

(100)/(001)-oriented PZT thick films were grown on SrRuO3//(100) SrTiO3 and (100) MgO substrates by matel organic chemical vapor deposition (MOCVD) with different volume fraction of (001) orientation, and were compared with (001) single-oriented epitaxial PZT thick films grown on SrRuO3//LaNiO3//(100) CaF2 by polarized Raman spectroscopy. The spectra from (100)-oriented domain and (001)-oriented domain can be individually observed for the films with the mixture orientation of (100)/(001). Raman analysis revealed the different strain state of (100)-oriented and (001)-oriented domains. Moreover, the rotation dependence of A1(1TO) mode could be explained by the calculation using the volume fraction of (001)-oriented domains obtained from X-ray reciprocal space mapping analysis for the films with the mixture orientation of (100)/(001). These results suggest the local structure characterized by Raman spectroscopy almost agreed with the structure characterized by XRD analysis for the films with the mixture orientation of (100)/(001).

Info:

Periodical:

Key Engineering Materials (Volumes 421-422)

Edited by:

Tadashi Takenaka, Hajime Haneda, Kazumi Kato, Masasuke Takata and Kazuo Shinozaki

Pages:

99-102

DOI:

10.4028/www.scientific.net/KEM.421-422.99

Citation:

M. Nakajima et al., "Polarized Raman Study for Epitaxial PZT Thick Film with the Mixture Orientation of (100)/(001)", Key Engineering Materials, Vols. 421-422, pp. 99-102, 2010

Online since:

December 2009

Export:

Price:

$35.00

[1] N. Setter, D. Damjanovic, L. Eng, G. Fox, S. Gevorgian, S. Hong, A. Kingon, H. Kohlstedt, N. Y. Park, G. B. Stephenson, I. Stolitchnov, A. K. Tagantsev, D. V. Taylor, T. Yamada, and S. Streiffer, J. Appl. Phys. 100 (2006), p.051606.

DOI: 10.1063/1.2336999

[2] K. Saito, T. Oikawa, T. Kurosawa, T. Akai and H. Funakubo, Jpn. J. Appl. Phys., 41 (2002), p.6730.

[3] J. Li, L. Chen, V. Nagarajan, R. Ramesh, and A. L. Roytburda, Appl. Phys. Lett., 84 (2004), p.2626.

[4] Li Sun, Yan-Feng Chen, Lei He, Chuan-Zhen Ge, De-Sheng Ding, Tao Yu, Ming-Sheng Zhang and Nai-Ben Ming, Phys. Rev. B, 55 (1997), p.12218.

DOI: 10.1103/physrevb.55.12218

[5] M. Osada, K. Nishida, S. Wada, S. Okamoto, R. Ueno, H. Funakubo, and T. Katoda, Appl. Phys. Lett., 87 (2005), p.232902.

[6] T Fujisawa, H. Nakaki, R. Ikariyama, T. Yamada, and H. Funakubo, Appl. Phys. Exp., 1 (2008), p.085001.

[7] M. Nakajima, T. Fujisawa, H. Naganuma, S. Okamura, K. Nishida, T. Yamamoto, M. Osada, and H. Funakubo, Under preparation.

[8] N. Dieckmann, R. Kursten, M. Lohndorf and A. Bock, Physicia C, 245 (1995), p.212.

[9] J. C. González, N. Mestres, T. Puig, J. Gázquez, F. Sandiumenge, X. Obradors, A. Usoskin, Ch. Jooss, H. C. Freyhardt, R. Feenstra, Phy. Rev. B, 70 (2004), p.094525.

DOI: 10.1103/physrevb.70.094525

[10] J. A. Sanjurjo and E. Lopez-Cruz, Phys. Rev. B, 28 (1983), p.7260.

[11] M. Otsu, H. Funakubo, T. Hioki, K. Shinozaki, T. Akai and N. Mizutani, Chem. Soc. J., 10 (1995), p.789.

[12] H. Nakaki, Y. Kim, S. Yokoyama, R. Ikariyama, H. Funakubo, K. Nishida, and K. Saito, Appl. Phys. Lett., 91 (2007), p.112904.

In order to see related information, you need to Login.