Overview on Roles of Wettability and Elasticity of Soft Matters for Emerging Technologies


Article Preview

The fundamental aspects of the wettability and the elasticity of soft matters, particularly, functional polymer solutions, lipid membranes, and biological cells in the development of new technologies are overviewed from the basic principles and underlying physics. The key concept is how to control interfacial interactions between solid substrates and soft matters through surface modification. Two representative examples are demonstrated to discuss the underlying physics behind the pattern and domain formation; one of them is multi-dimensional generation of heterogeneous organic arrays and the other is micro-patterning of red blood cells on lipid membranes



Key Engineering Materials (Volumes 428-429)

Edited by:

Yuan Ming Huang




S. W. Lee et al., "Overview on Roles of Wettability and Elasticity of Soft Matters for Emerging Technologies", Key Engineering Materials, Vols. 428-429, pp. 3-11, 2010

Online since:

January 2010




[1] V. Vorflusev and S. Kumar: Science Vol. 283 (1999), p. (1903).

[2] T. Baumgart, S. T. Hess, and W. W. Webb: Nature Vol. 425 (2003), p.821.

[3] L. F. Pease III, P. Deshpande, Y. Wang, W. B. Russel, and S. Y. Chou: Nat. Nanotech. Vol. 2 (2007), p.545.

[4] E. Jang, H. -R. Kim, Y. -J. Na, and S. -D. Lee: Appl. Phys. Lett. Vol. 91 (2007), p.071109.

[5] Y. -Y. Noh, N. Zhao, M. Caironi, and H. Sirringhaus: Nat. Nanotech. Vol. 2 (2007), p.784.

[6] S. -W. Lee, Y. -J. Na, and S. -D. Lee: Langmuir Vol. 25 (2009), p.5421.

[7] J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, and A. B. Holmes: Nature Vol. 347 (1990), p.539.

[8] C. D. Sheraw, L. Zhou, J. R. Huang, D. J. Gundlach, T. N. Jackson, M. G. Kane, I. G. Hill, M. S. Hammond, J. Campi, B. K. Greening, J. Francl, and J. West: Appl. Phys. Lett. Vol. 80 (2002), p.1088.

DOI: https://doi.org/10.1063/1.1448659

[9] S. R. Forrest: Nature Vol. 428 (2004), p.911.

[10] F. Eder, H. Klauk, M. Halik, U. Zschieschang, G. Schmid, and C. Dehm: Appl. Phys. Lett. Vol. 84 (2004), p.2673.

DOI: https://doi.org/10.1063/1.1690870

[11] Y. -J. Na, S. -W. Lee, W. Choi, S. -J. Kim, and S. -D. Lee: Adv. Mater. Vol. 21 (2009), p.537.

[12] S. -W. Lee, C. Jeong, and S. -D. Lee: J. Phys. Chem. B Vol. 113 (2009), p.3610.

[13] M. Granstrom, K. Petritsch, A. C. Arias, A. Lux, M. R. Andersson, and R. H. Friend: Nature Vol. 395 (1998), p.257.

DOI: https://doi.org/10.1038/26183

[14] J. A. Rogers and Z. Bao: J. Polym. Sci., Part A: Polym. Chem. Vol. 40 (2002), p.3327.

[15] Y. Xia, E. Kim, X. -M. Zhao, J. A. Rogers, M. Prentiss, and G. M. Whitesides: Science Vol. 273 (1996), p.347.

[16] T. R. Hebner and J. C. Sturm: Appl. Phys. Lett. Vol. 73 (1998), p.1775.

[17] P. G. de Gennes: Rev. Mod. Phys. Vol. 57 (1985), p.827.

[18] J. Israelachvilli, in: Intermolecular and Surface Forces, 2nd ed., Academic Press, London (1985).

[19] G. Reiter, A. Sharma, A. Casoli, M. -O. David, R. Khanna, and P. Auroy: Europhys. Lett. Vol. 46 (1999), p.512.

[20] T. -Y. Yoon, C. Jeong, S. -W. Lee, J. H. Kim, M. C. Choi, S. -J. Kim, M. W. Kim, and S. -D. Lee: Nat. Mater. Vol. 5 (2006), p.281.

[21] D. K. Yoon, M. C. Choi, Y. H. Kim, M, W. Kim, O. D. Lavrentovich, and H. -T. Jung: Nat. Mater. Vol. 6 (2007), p.866.

[22] E. W. Barrett, M. V. B. Phelps, R. J. Silva, R. P. Gaumond, and H. R. Allcock: Biomacromolecules Vol. 6 (2005), p.1689.

[23] J. Nakanishi, Y. Kikuchi, S. Inoue, K. Yamaguchi, T. Takarada, and M. Maeda: J. Am. Chem. Soc. Vol. 129 (2007), p.6694.

[24] J. T. Groves, L. K. Mahal, and C. R. Bertozzi: Langmuir Vol. 17 (2001), p.5129.

[25] T. H. Rider, M. S. Petrovick, F. E. Nargi, J. D. Harper, E. D. Schwoebel, R. H. Mathews, D. J. Blanchard, L. T. Bortolin, A. M. Young, J. Z. Chen, and M. A. Hollis: Science Vol. 301 (2003), p.213.

[26] N. A. Peppas, J. Z. Hilt, A. Khademhosseini, and R. Langer: Adv. Mater. Vol. 18 (2006), p.1345.

[27] R. -Z. Lin, C. -T. Ho, C. -H. Liu, and H. -Y. Chang: Biotechnol. J. Vol. 1 (2006), p.949.

[28] M. Nishizawa, K. Takoh, and T. Matsue: Langmuir Vol. 18 (2002), p.3645.

[29] D. Falconnet, A. Koenig, T. Assi, and M. Textor: Adv. Funct. Mater. Vol. 14 (2004), p.749.

[30] A. Tourovskaia, T. Barber, B. T. Wickes, D. Hirdes, B. Grin, D. G. Castner, K. E. Healy, and A. Folch: Langmuir Vol. 19 (2003), p.4754.

DOI: https://doi.org/10.1021/la0267948

[31] E. Ostuni, R. G. Chapman, M. N. Liang, G. Meluleni, G. Pier, D. E. Ingber, and G. M. Whitesides: Langmuir Vol. 17 (2007), p.6336.

[32] D. Falconnet, G. Csucs, H. M. Grandin, and M. Textor: Biomaterials Vol. 27 (2006), p.3044.

[33] C. Closse, J. Dachary-Prigent, and M. R. Br. Boisseau: J. Haematol. Vol. 107 (1999), p.300.

[34] P. G. de Gennes: J. Phys. (Paris) Colloque 4 (1969), C4-65.

[35] W. G. Helfrich: Naturforsch. C. Vol. 28 (1973), p.693.

[36] E. A. Evans: Biophys. J. Vol. 43 (1983), p.27.

[37] E. A. Evans: Biophys. J. Vol. 30 (1980), p.265.

[38] H. Schonherr, J. M. Johnson, P. Lenz, C. W. Frank, and S. G. Boxer: Langmuir Vol. 20 (2004), p.11600.

[39] Z. Chen and R. P. Rand: Biophys. J. Vol. 73 (1997), p.267.