Grain Boundary Sliding Below Ambient Temperature in H.C.P. Metals

Abstract:

Article Preview

Hexagonal close-packed metals and alloys show significant creep behavior with extremely low activation energies at and below ambient temperature even below their 0.2% proof stresses. It is caused by straightly-aligned dislocation arrays in a single slip system without any dislocation cuttings. These dislocation arrays should, then, pile up at grain boundary (GB) because of violation of von Mises' condition in H.C.P. structure. The piled-up dislocations have to be accommodated by GB sliding. Electron back scatter diffraction (EBSD) analyses and atomic force microscope (AFM) observations were performed to reveal the mechanism of GB sliding below ambient temperature in H.C.P. metals as an accommodation mechanism of ambient temperature creep. EBSD analyses revealed that crystal lattice rotated near GB, which indicates the pile up of lattice dislocations at GB. AFM observation showed a step caused by GB sliding. GB sliding below ambient temperature in H.C.P. metals are considered to compensate the incompatibility between neighboring grains by dislocation slip, which is called slip induced GB sliding.

Info:

Periodical:

Edited by:

Daniel G. Sanders

Pages:

299-303

DOI:

10.4028/www.scientific.net/KEM.433.299

Citation:

E. Sato and T. Matsunaga, "Grain Boundary Sliding Below Ambient Temperature in H.C.P. Metals", Key Engineering Materials, Vol. 433, pp. 299-303, 2010

Online since:

March 2010

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.