Achieving Traceability of Industrial Computed Tomography

Abstract:

Article Preview

Achieving traceability is crucial for complex measurement techniques, especially for coordinate measuring machines (CMMs). For CMMs using tactile probes, traceability can for certain measurements be achieved using model-based uncertainty budgets. Up to now, uncertainty simula-tions could be used applicable only for tactile CMM measurements of regular geometries, but are available as an add-on for different CMMs. This procedure is accepted by guidelines and inter-national standards (VDI/VDE 2617-7, supplement 1 [1] to GUM). Furthermore, empirical ap-proaches to assess the measurement uncertainty by means of calibrated workpieces or prior know-ledge exist or are under development. These approaches can as a matter of principle also be used for CMMs featuring computed tomography (CT). In this paper, the empirical assessment of the mea-surement uncertainty of the upcoming measurement technology CT [2, 3] will be discussed uniting the present approaches and the current knowledge, with the focus being on the applicability of con-cepts for users in industry. For this purpose, the influences on dimensional CT measurements are analyzed and evaluated, taking the measurement data of a current industrial micro CT system as a basis.

Info:

Periodical:

Edited by:

Yuri Chugui, Yongsheng Gao, Kuang-Chao Fan, Roald Taymanov and Ksenia Sapozhnikova

Pages:

79-83

DOI:

10.4028/www.scientific.net/KEM.437.79

Citation:

M. Bartscher et al., "Achieving Traceability of Industrial Computed Tomography", Key Engineering Materials, Vol. 437, pp. 79-83, 2010

Online since:

May 2010

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.