Self-Supporting Nanocrystalline Diamond Foils – A New Concept for Crystalline Diamond on any Technical Surface

Abstract:

Article Preview

The manufacturing and application of self-supporting nanocrystalline diamond foils is introduced. The high temperature manufacturing of nanocrystalline diamond foils by hot-filament chemical vapour deposition (HFCVD) is separated from the low temperature application, allowing the coating of temperature sensitive materials, which cannot be coated by HFCVD conventionally. By coating appropriate template materials and stripping-off after the CVD-process, self-supporting, flexible nanocrystalline diamond foils with high hardness (> 70 GPa) and very low thermal conductivity (< 1 W/mK) with thicknesses of up to 100 µm can be produced. Lasercutting is an appropriate method for machining any desired geometry. Thus the possibility to use the extreme properties of diamond for protection against friction and wear on new substrate materials, e.g. steels, light metals and polymers, is generated.

Info:

Periodical:

Edited by:

M. Merklein, F.-W. Bach, K.-D. Bouzakis, B. Denkena, M. Geiger and H.-K. Toenshoff

Pages:

163-169

DOI:

10.4028/www.scientific.net/KEM.438.163

Citation:

M. A. Lodes et al., "Self-Supporting Nanocrystalline Diamond Foils – A New Concept for Crystalline Diamond on any Technical Surface", Key Engineering Materials, Vol. 438, pp. 163-169, 2010

Online since:

May 2010

Export:

Price:

$38.00

[1] O. Lemmer. CVD-diamond coating in chip-forming fabrication. Keramische Zeitschrift, 50(11): 934-935, (1998).

[2] A. Schade, M. Perle, S.M. Rosiwal, and R.F. Singer. Micro structured CVD diamond coated sliding bearings for improved tribological performance under dry running conditions. Materialwissenschaft und Werkstofftechnik, 35(10-11): 929-935, (2004).

DOI: 10.1002/mawe.200400831

[3] S. Schwarz, S.M. Rosiwal, M. Frank, D. Breidt, and R.F. Singer. Dependence of the growth rate, quality, and morphology of diamond coatings on the pressure during the CVD-process in an industrial hot-filament plant. Diamond and Related Materials., 11(3-6): 589-595, (2002).

DOI: 10.1016/s0925-9635(01)00702-6

[4] T.R. Anthony and J.F. Fleischer. CVD diamond films, U.S. Patent 93304533. 8, (1992).

[5] M. Wiora, K. Brühne, A. Flöter, P. Gluche, T.M. Willey, S.O. Kucheyev, A.W. Van Buuren, A.V. Hamza, J. Biener, and H. -J. Fecht. Grain size dependent mechanical properties of nanocrystalline diamond films grown by hot-filament CVD. Diamond and Related Materials, 18(58): 927-930, May (2009).

DOI: 10.1016/j.diamond.2008.11.026

[6] Dieter M. Gruen, Xianzheng Pan, Alan R. Krauss, Shengzhong Liu, Jianshu Luo, and Christopher M. Foster. Deposition and characterization of nanocrystalline diamond films. In J. Vac. Sci. Technol. A, 12: 1491-1495, (1994).

DOI: 10.1116/1.579343

[7] A. Hikavyy, P. Clauws, J. Maes, V.V. Moshchalkov, J.E. Butler, T. Feygelson, O.A. Williams, M. Daenen, and K. Haenen. An investigation of structural and electrical properties of boron doped and undoped nanocrystalline diamond films. Phys. Status Solidi A Appl. Mater., 203(12): 3021- 3027, (2006).

DOI: 10.1002/pssa.200671118

[8] J. Michler, M. Mermoux, Y. Von Kaenel, A. Haouni, G. Lucazeau, and E. Blank. Residual stress in diamond films: Origins and modelling. Thin Solid Films, 357(2): 189-201, (1999).

DOI: 10.1016/s0040-6090(99)00528-3

[9] A. C. Ferrari and J. Robertson. Origin of the 1150cm-1 raman mode in nanocrystalline diamond. Phys. Rev. B, 63(12): 121405-, (2001).

In order to see related information, you need to Login.