

 A Hybrid Differential Evolution Algorithm for Solving Function
Optimization

Zhigang Zhou
Department of Computer Science and Technology, Dezhou University, China

zzg@dzu.edu.cn

Keywords: Differential evolution (DE); evolutionary algorithm; optimization.

Abstract. One of the key points resulting in the success of differential evolution (DE) is its
mechanism of different mutation strategies for generating mutant vectors. In this paper, we also
present a novel mutation strategy inspired by the velocity updating scheme of particle swarm
optimization (PSO). The proposed approach is called HDE, which conducts the mutation strategy on
the global best vector for each generation. Experimental studies on 8 well-known benchmark
functions show that HDE outperforms other three compared DE algorithms in most test cases.

Introduction

Differential Evolution (DE) [1] is a recently proposed evolutionary technique, which has been
shown to be a simple yet efficient evolutionary algorithm for many optimization problems [2]. Since
the DE algorithm is simple, easy implementation and robustness, it has been applied to many
real-world problems, such as image processing, signal processing, pattern recognition, and optimal
design.

However, the performance of DE is still quite dependent on the setting of control parameters such
as the mutation factor and the crossover probability according to both experimental studies and
theoretical analyses. Although there are some suggestions for parameter settings, the interaction
between the parameter setting and the optimization performance is still complicated and not
completely understood. This is mainly because there is no fixed parameter setting that is suitable for
different kinds of problems.

To tackle this problem, many researchers proposed different parameter setting mechanisms. The
control parameter is altered by some deterministic rules without taking into account any feedback
from the evolutionary search. One example is the time dependent change of the mutation rates
proposed by Holland [3]. Gamperle et al. [4] evaluated different parameter settings for DE on the
Sphere, Rosenbrock’s and Rastrigin’s functions. Their experimental results revealed that the global
optimum searching capability and the convergence speed are very sensitive to the choice of control
parameters ps, F, and CR. Furthermore, a plausible choice of the population size ps is between 3D and
8D, with the scaling factor F = 0.6 and the crossover rate CR in [0.3, 0.9]. Recently, the authors in [5]
claim that typically 0.4 < F < 0.95 with F = 0.9 is a good first choice. CR typically lies in (0, 0.2) when
the function is separable, while in (0.9, 1) when the function’s parameters are dependent. Liu and
Lampinen [6] proposed a fuzzy adaptive DE (FADE), which uses a fuzzy logic controller to set the
probability of mutation and crossover. Qin and Suganthan [7] presented a self-adaptive DE (SaDE)
for numerical optimization, which focused on adaptation for parameter CR and mutation strategies of
DE. Brest et al. [8] introduced self-adapting control parameter settings in DE (SADE). Yang et al. [9]
introduced a neighborhood search strategy to DE (NSDE), which generates F from Gaussian and
Cauchy distributed random numbers instead of predefining a constant F. Ali and Torn [10] introduced
auxiliary population and automatic calculating of the amplification factor F.

In this paper, we propose a hybrid DE algorithm to improve the performance of DE. The proposed
approach is called HDE, which employs a novel mutation strategy inspired by the velocity updating
model of PSO. Experimental studies on eight well-known benchmark problems show that HDE
obtains better performance when comparing with other three DE variants.

RETRACTED

RETRACTED

RETRACTED

RETRACTED

Key Engineering Materials Online: 2010-06-07
ISSN: 1662-9795, Vols. 439-440, pp 315-320
doi:10.4028/www.scientific.net/KEM.439-440.315
© 2010 The Author(s). Published by Trans Tech Publications Ltd, Switzerland.

This article is an open access article under the terms and conditions of the Creative Commons Attribution (CC BY) license
(https://creativecommons.org/licenses/by/4.0)

https://doi.org/10.4028/www.scientific.net/KEM.439-440.315

Differential Evolution

The main idea of DE is not to mutate vector components by simply replacing their values by random
values. Instead, two population mates are randomly selected whose weighted difference is added to a
third randomly selected population member creating this way a mutant vector. Then, either a
two-point crossover [1] or a multi-point crossover [1] is performed between the mutant vector and the
current population member being considered. At the end, the new created offspring vector (trial
vector) replaces the current considered vector in the next generation, if its fitness is better. Otherwise,
the trial vector is discarded.

Let D and ps be the dimension of the problem and the population size, respectively. A vector
member in the population can be defined by

()....,1 , , 2 , , , ,,X X X Xi G i G Di Gi G = (1)
where 1, 2, ...i ps= , 1, 2, ...,G MAXG= and MAXG is the maximum number of generations.

Like genetic algorithms, DE also has three operators, mutation, crossover and selection. First, we
create a mutant vector Vi,G. And then we recombine the mutant vector and the current vector to create
a new trail vector Ui,G. At last, we compare the fitness value of Vi,G with Ui,G, and select a better one as
the new current vector in the next generation. The three operators are describes as follows.

DE uses the difference between randomly selected individuals as the source of random variations
for a third individual, referred to as the target individual. Trail solutions are generated by adding
weighted differences vector. This process is referred as a mutation operator described as follows. For
each vector Xi,G in generation G, a mutant vector Vi,G is defined by

, 1, 2, 3,()V X X Xi G r G r G r GF= + − (2)

where (1, 2, ...),X i psi G = are solution vectors in generation G, ps is the population size, 1, 2, ...i ps= and r1,

r2, and r3 are mutually different random integer indices selected from {1, 2, ... }ps .
After the mutation step, a new trail vector ()....,1 , , 2 , , , ,,U U U Ui G i G Di Gi G = is generated by recombination

of the mutant vector and the current vector.

, (0,1),
, ,,

V if rand CR j kji G j
U ji G X otherwiseji G

 ≤ ∨ =
= 


 (3)

where CR is the predefined crossover probability, and (0,1)rand j is a random number within (0, 1) for

the ith dimension, and {1, 2, ..., }k D∈ is a random parameter index.
After the two steps, a selection mechanism is used to choose a better vector between Ui,G and Xi,G

to update the current vector in the next generation. For a minimization problem, the vector with
smaller fitness value is better.

The Proposed Approach

Generally, the termination condition of an evolutionary algorithm is that the global best individual in
the population finds the global optimum or the number of function evaluations reaches to the
predefined maximum value. It can be found that the global best individual is important toward
searching the global optimum. If the global best individual is trapped, the whole population may not
find good solutions. To tackle this problem, we propose a novel mutation strategy on the global best
individual. The motivation of the approach is inspired by the velocity updating model of PSO which
utilizes the searching experiences of the previous best individuals and the global best individual.

In PSO, an individual in the population is called “particle”. Each particle has two vectors: position
and velocity, which are updated as follows [11].

RETRACTED

RETRACTED

RETRACTED

RETRACTED

316 Advanced Measurement and Test X

(1) * () * 1() * (()) * 2() * (())1 2V t w V t c rand pbest X t c rand Best X ti i i i i−− ++ = + (4)

(1) () (1)X t X t V ti i i+ = + + (5)
where Xi and Vi are the position and velocity of the ith particle, pbesti and Best are previous best
particle of the ith particle and the global best particle found by all particles so far respectively, w is an
inertia factor, rand1() and rand2() are two random numbers independently generated within the range
of [0,1], and c1 and c2 are two learning factors.

Based on the velocity updating equation, we propose a novel mutation strategy as follows.

* * * () * ()1 2 1 3 2 1Best a Best a Best X a X Xi i i= + − + − (6)
where Best is the global best individual in the population, Xi1 and Xi2 are two different individuals, i1
and i2 are two different random number within [1, ps], i1≠i2, ps is the population size, a1, a2 and a3
are three random numbers within [0,1], and a1 + a2 + a3 = 1. The random numbers can be generated by

(0,1), (0,1), (0,1)1 2 3a rand a rand a rand= = = (7)

1 2 3sum a a a= + + (8)

, ,1 2 31 2 3a a sum a a sum a a sum= = = (9)

where rand(0,1) is a random number within [0,1].

The Framework of HDE Algorithm

Begin
while NE < MAXNE do

for i = 1 to ps do
Generate a trial individual according to Eq. 2 and Eq. 3;
Calculate the fitness of the trial individual;
Select a fitter one between Xi and the trail;

end for
Generate random numbers according to Eq. 7, Eq. 8 and Eq. 9;
Conduct the mutation according to Eq. 6;
If Best* is better than Best

Replace Best with Best*;
end if

end while
End

Every generation, we conduct the mutation strategy. If the individual Best* after the mutation is
better than the old Best, then replace the Best with Best *; otherwise keep the Best unchangeable. The
application of the mutation strategy used in DE is described in the framework of the HDE algorithm,
where ps is the population size, Best is the global best individual in the population, NE is the number
of function evaluations, and MAXNE is the maximum number of function evaluations.

Simulation Studies

Test Functions. In this paper, we test the proposed approach HDE on eight well-known benchmark
problems, which were used in early studies [12]. All the functions used in this paper are to be
minimized. The description of the benchmark functions and their global optima are listed as follows.

RETRACTED

RETRACTED

RETRACTED

RETRACTED

Key Engineering Materials Vols. 439-440 317

2
11

Df xii= ∑ =

where [100,100]xi ∈ − , D=30, and the global optimum is 0.

1 12
Df x xii ii

D∑ ∏= += =

where [10,10]xi ∈ − , D=30, and the global optimum is 0.

()213 1
D if x ji j∑= ∑= =

where [100,100]xi ∈ − , D=30, and the global optimum is 0.

()4 max ,1f x i Dii= ≤ ≤

where [100,100]xi ∈ − , D=30, and the global optimum is 0.
2 2 21 100() (1)15 1

Df x x xi ii i
−= − + −∑ = +
 



where [30, 30]xi ∈ − , D=30, and the global optimum is 0.

()2
0.516

Df xii= +∑ =   

where [100,100]xi ∈ − , D=30, and the global optimum is 0.
4

7 [0,1)1
D

i randf i ix += ∑ =

where [1.28,1.28]xi ∈ − , D=30, and the global optimum is 0.

()sin | |18
Df x xi ii= −∑ =

where [500, 500]xi ∈ − , D=30, and the global optimum is -12569.5.
Comparison of HDE with DE. In this section, we compare the proposed approach HDE with

classical DE on the ten test problems. For the sake of fair competition, we use the same parameter
settings for HDE and DE. The population size ps, CR and F are set to 50, 0.9 and 0.5, respectively.
Both DE and HDE use the same mutation strategy DE/rand/1. All the experiments in this paper are
conducted 30 times with different random seeds, and the average results throughout the optimization
runs are recorded.

Table 1. The results achieved by DE and HDE.

Functions
DE HDE

Mean Std Dev Mean Std Dev
f1 1.58e-57 3.48e-57 5.57e-61 4.59e-61
f2 4.98e-36 7.26e-36 6.49e-38 2.90e-38
f3 7.63e-07 5.21e-07 5.14e-08 4.62e-08
f4 7.24 4.82 0.902 0.83
f5 22.68 6.36 3.75 4.29
f6 0 0 0 0
f7 6.61e-03 2.13e-03 1.48e-03 3.21e-03
f8 -12095.7 332.5 -12451.2 85.6

The comparison results between HDE and DE are presented in Table 1, where “Mean” indicates

the mean best function values, and “Std Dev” stands for the standard deviation. From the results, it
can be seen that HDE outperforms DE in all test cases except for functions f6. On this function, both
HDE and DE achieve the same results.

Comparison of HDE with SaDE and SDE. This section presents another comparative study to
further verify the performance of HDE. The involved algorithm includes Self-adaptive DE (SaDE)

RETRACTED

RETRACTED

RETRACTED

RETRACTED

318 Advanced Measurement and Test X

and DE with neighborhood search (NSDE). The parameter settings of SaDE and NSDE are described
in [13]. For IDE, the population size ps, CR and F are set to 50, 0.9 and 0.5, respectively. The initial
population is generated uniformly at random in the search domain of the functions. The maximum
number function evaluations (MAXNE) are listed in Table 2.

Table 2. The results achieved by SaDE, NSDE and HDE.

Functions MAXNE
SaDE NSDE HDE
Mean Mean Mean

f1 150000 7.49e-20 7.76e-16 5.57e-61
f2 150000 6.22e-11 4.51e-10 6.49e-38
f3 150000 1.12e-18 1.06e-14 5.14e-08
f4 150000 2.96e-02 2.54e-02 0.902
f5 500000 2.10e+01 1.24e+01 3.75
f6 150000 0 0 0
f7 150000 7.58e-03 1.20e-02 1.48e-03
f8 150000 -12569.5 -12569.5 -12451.2

The average results over 30 trails of HDE, SaDE and NSDE are presented in Table 2, where
“Mean” indicates the mean best function values, and “Std Dev” stands for the standard deviation. The
results of SaDE and NSDE are taken form Table 2 and 3 in [13]. From the results, it cane be seen that
HDE outperforms SaDE and NSDE on functions f1, f2, f5 and f7, and significantly improve the results
on functions f2 and f5. For function f6, all the three algorithms obtain the same performance. SaDE
achieves better results than NSDE and HDE on function f3, while NSDE outperforms the other two
DE algorithms on function f4. Both SaDE and NSDE achieve better results than IDE on function f8.

Conclusion

This paper presents a hybrid DE algorithm to improve the performance of DE. The proposed approach
is called HDE, which employs a novel mutation strategy inspired by the velocity updating model of
PSO. Every generation, we conduct the mutation on the global best individual, and select a better one
between the mutant and the best as the new current best individual. Experimental studies on eight
well-known benchmark problems show that HDE obtains better performance than classical DE,
SaDE and NSDE in most test cases.

However, HDE and other compared DE algorithms falls into local minima on function f5. It
suggests that the proposed mutation strategy is not suitable for all kinds of problems. It is worth to
introduce more efficient strategies into DE to improve its performance in the future work.

References

[1] R. Storn, and K. Price, Differential evolution--A simple and efficient heuristic for global
optimization over continuous spaces. J. Global Optimization, (1997), pp. 341

[2] J. Vesterstrom and R. Thomsen, A comparative study of differential evolution, particle swarm
optimization, and evolutionary algorithms on numerical benchmark problems, Proceedings of the
2004 Congress on Evolutionary Computation, vol. 2 (2004), pp. 1980.

[3] J. H. Holland, Adaptation in 'atural and Artificial Systems. Ann Arbor, MI: The University of
Michigan Press, (1975)

[4] R. Gamperle, S. D. Muller and A. Koumoutsakos, Parameter study for differential evolution, in
WSEAS NNA-FSFS-EC 2002, Interlaken, Switzerland, (2002)

[5] J. Ronkkonen, S. Kukkonen and K. V. Price, Real parameter optimization with differential
evolution, in Proc. Congr. Evol. Comput. (CEC), vol. 1 (2005), pp. 506

RETRACTED

RETRACTED

RETRACTED

RETRACTED

Key Engineering Materials Vols. 439-440 319

[6] J. Liu, and J. Lampinen, A fuzzy adaptive differential evolution algorithm, Soft Computing-A
Fusion of Foundations, Methodologies and Applications, (2005), pp. 448

[7] A. K. Qin, and P. N. Suganthan, Self-adaptive differential evolution algorithm for numerical
optimization. Proc. Congr. Evol. Comput., (2005), pp. 1785

[8] J. Brest, S. Greiner, B. Boskovic, M. Mernik and V. Zumer, Self-adapting control parameters in
differential evolution: A comparative study on numerical benchmark problems, IEEE Trans.
Evol. Comput., (2006), pp. 646

[9] Z. Yang, J. He, and X. Yao, Making a difference to differential evolution, Advance in
Metaheuristics for Hard Optimization, (2008), pp. 397

[10] M. M. Ali and A. Torn, Population set-based global optimization algorithms: Some
modifications and numerical studies, Comput. Oper. Res., (2004), pp. 1703

[11] Y. Shi, R.C. Eberhart, A modified particle swarm optimizer, Proceedings of the Conference on
Evolutionary Computation, IEEE Press, Piscataway, (1998), pp. 69

[12] X. Yao, Y. Liu and G. Lin, Evolutionary programming made faster, IEEE Trans. Evol. Comput.,
vol. 3(1999), pp. 82

[13] Z. Yang, K. Tang and X. Yao, Self-adaptive differential evolution with neighborhoodsearch, In
Proceedings of Congress on Evolutionary Computation, (2008), pp. 1110

RETRACTED

RETRACTED

RETRACTED

RETRACTED

320 Advanced Measurement and Test X

