Key Engineering Materials Online: 2010-06-07
ISSN: 1662-9795, Vols. 439-440, pp 315-320

doi:10.4028/www.scientific.net/KEM.439-440.315

© 2010 The Author(s). Published by Trans Tech Publications Ltd, Switzerland.

A Hybrid Differential Evolution Algorithm for Solving Function
Optimization

Zhigang Zhou
Department of Computer Science and Technology, Dezhou University, China

zzg@dzu.edu.cn

Keywords: Differential evolution (DE); evolutionary algorithm; optimization.

Abstract. One of the key points resulting in the success of differential evolut

Introduction

Differential Evolution (DE) [1] is a recently propose

it has been applied to many
ttern recognition, and optimal

the DE algorithm is simple, easy implementation a
real-world problems, such as image processing, signal

design.

However, the performance of DE is still qui adent on the setting of control parameters such
as the mutation factor and the crossover prob&Rilig’ ding to both experimental studies and
theoretical analyses. Although there 3 foestiohs for parameter settings, the interaction
between the parameter setting ag jon performance is still complicated and not
completely understood. This is ya 1s no fixed parameter setting that is suitable for

different kinds of problems.

To tackle this problem proposed different parameter setting mechanisms. The
control parameter is al inistic rules without taking into account any feedback
from the evolutiongy . example is the time dependent change of the mutation rates

the functi§ separable, while in (0.9, 1) when the function’s parameters are dependent. Liu and
Lampinen [ bposed a fuzzy adaptive DE (FADE), which uses a fuzzy logic controller to set the
probability of/mutation and crossover. Qin and Suganthan [7] presented a self-adaptive DE (SaDE)
for numerical optimization, which focused on adaptation for parameter CR and mutation strategies of
DE. Brest et al. 8] introduced self-adapting control parameter settings in DE (SADE). Yang et al. [9]
introduced a neighborhood search strategy to DE (NSDE), which generates /' from Gaussian and
Cauchy distributed random numbers instead of predefining a constant /. Ali and Torn [10] introduced
auxiliary population and automatic calculating of the amplification factor F.

In this paper, we propose a hybrid DE algorithm to improve the performance of DE. The proposed
approach is called HDE, which employs a novel mutation strategy inspired by the velocity updating
model of PSO. Experimental studies on eight well-known benchmark problems show that HDE
obtains better performance when comparing with other three DE variants.

This article is an open access article under the terms and conditions of the Creative Commons Attribution (CC BY) license
(https://creativecommons.org/licenses/by/4.0)


https://doi.org/10.4028/www.scientific.net/KEM.439-440.315

316 Advanced Measurement and Test X

Differential Evolution

The main idea of DE is not to mutate vector components by simply replacing their values by random
values. Instead, two population mates are randomly selected whose weighted difference is added to a
third randomly selected population member creating this way a mutant vector. Then, either a
two-point crossover [ 1] or a multi-point crossover [ 1] is performed between the mutant vector and the
current population member being considered. At the end, the new created offspring vector (trial
vector) replaces the current considered vector in the next generation, if its fitness is better. Otherwise,
the trial vector is discarded.

Let D and ps be the dimension of the problem and the population size, respectively. A vector
member in the population can be defined by

1)
where i=1,2,..ps, G=1,2,...M4X; and MAXg is the maximum number of gen
Like genetic algorithms, DE also has three operators, mutation, crossg st, we
create a mutant vector V; . And then we recombine the mutant vector to create
anew trail vector U; ¢. At last, we compare the fitness value of V; ¢ wg ; etter one as
the new current vector in the next generation. The three operator,

weighted differences vector. This process is referred as escribed as follows. For
each vector X; ¢ in generation G, a mutant vector V; g is

Vi = X6t F(X0 6 = X36)

ViG>
UVjic =
’ XjiG»

Generally, the)fermination condition of an evolutionary algorithm is that the global best individual in
the population finds the global optimum or the number of function evaluations reaches to the
predefined maximum value. It can be found that the global best individual is important toward
searching the global optimum. If the global best individual is trapped, the whole population may not
find good solutions. To tackle this problem, we propose a novel mutation strategy on the global best
individual. The motivation of the approach is inspired by the velocity updating model of PSO which
utilizes the searching experiences of the previous best individuals and the global best individual.

In PSO, an individual in the population is called “particle”. Each particle has two vectors: position
and velocity, which are updated as follows [11].



Key Engineering Materials Vols. 439-440 317

Vit +1) = w*V;(2) + ¢ * rand1() * (pbest; — X; (1)) + ¢y * rand2() * (Best — X; (1)) 4)
X;@+D)=X;0)+V; (1 +1) (5)

where Xj and V; are the position and velocity of the ith particle, pbest; and Best are previous best
particle of the ith particle and the global best particle found by all particles so far respectively, w is an
inertia factor, randI() and rand2() are two random numbers independently generated within the range
of [0,1], and ¢; and ¢, are two learning factors.

Based on the velocity updating equation, we propose a novel mutation strategy as follows.

Best* = ay * Best + ay * (Best = X ;) + ay *(X;p — X;1)

are three random numbers within [0,1], and a; + a, + a3 = 1. The random numb

ay = rand (0,1), ay = rand (0,1), as = rand (0,1) (7)
sum = a; +a, +a, (8)
a =a1/sum,a2 =a2/sum,a3 :a3/sum )

where rand(0,1) is a random number within [0,1].
The Framewo

Begin
while NE < MAXN

afdom numbers according to Eq. 7, Eq. 8 and Eq. 9;
he mutation according to Eq. 6;
is better than Best

e conduct the mutation strategy. If the individual Best* after the mutation is
better than 1d, Best, then replace the Best with Best *; otherwise keep the Best unchangeable. The

where ps 1s the population size, Best is the global best individual in the population, NE is the number
of function evaluations, and MAXyg i1s the maximum number of function evaluations.

Simulation Studies

Test Functions. In this paper, we test the proposed approach HDE on eight well-known benchmark
problems, which were used in early studies [12]. All the functions used in this paper are to be
minimized. The description of the benchmark functions and their global optima are listed as follows.



318 Advanced Measurement and Test X

_vyb 2
N =2

where x;  [-100,100], D=30, and the global optimum is 0.

_vD .
hH= Zle‘xz“ +T2)
where x; € [-10,101, D=30, and the global optimum is 0.
2
D .
where x;  [-100,100], D=30, and the global optimum is 0.

J<i<D)

Jy = max, (|xi
where x;  [-100,100], D=30, and the global optimum is 0.
2.2 2
where x; € [-30,301, D=30, and the global optimum is 0.
2
_~D
fo =2 (L% +05])

where x; e [-100,100], D=30, and the global optimum is 0.

D ;.4
fr= Zi=l IX. +rand[0,1)
where x; e [-1.28,1.28], D=30, and the global optimum is 0

fo =22 —x;sin (| %, 1)

Comparison of HDE with DE. In_thi i dmpare the proposed approach HDE with
of fair competition, we use the same parameter
and F are set to 50, 0.9 and 0.5, respectively.
W2y DE/rand/1. All the experiments in this paper are
ecds, and the average results throughout the optimization

e results achieved by DE and HDE.

DE HDE
Mean Std Dev | Mean Std Dev
1.58e-57 | 3.48e-57 | 5.57¢-61 | 4.59¢-61
4.98¢-36 | 7.26e-36 | 6.49¢-38 | 2.90e-38
7.63e-07 | 5.21e-07 | 5.14e-08 | 4.62¢-08
7.24 4.82 0.902 0.83
22.68 6.36 3.75 4.29

0 0 0 0
6.61e-03 | 2.13e-03 | 1.48e-03 | 3.21e-03
f3 -12095.7 | 3325 [-124512| 85.6

The comparison results between HDE and DE are presented in Table 1, where “Mean” indicates
the mean best function values, and “Std Dev” stands for the standard deviation. From the results, it
can be seen that HDE outperforms DE in all test cases except for functions fs. On this function, both
HDE and DE achieve the same results.

Comparison of HDE with SaDE and NSDE. This section presents another comparative study to
further verify the performance of HDE. The involved algorithm includes Self-adaptive DE (SaDE)



Key Engineering Materials Vols. 439-440 319

and DE with neighborhood search (NSDE). The parameter settings of SaDE and NSDE are described
in [13]. For IDE, the population size ps, CR and F are set to 50, 0.9 and 0.5, respectively. The initial
population is generated uniformly at random in the search domain of the functions. The maximum
number function evaluations (MAXxg) are listed in Table 2.

Table 2. The results achieved by SaDE, NSDE and HDE.

) SaDE NSDE HDE
Functions | - MAXne Mean Mean Mean
f 150000 7.49¢-20 | 7.76e-16 | 5.57e-61
1 150000 6.22e-11 4.51e-10 | 6.49¢-38
f 150000 1.12e-18 1.06e-14 | 5.14e-08
fa 150000 2.96e-02 | 2.54e-02 0.902
fs 500000 2.10e+01 | 1.24e+01 3.75
fo 150000 0 0 0
17 150000 7.58e-03 1.20e-02 1.46¢e-03
fs 150000 -12569.5 | -12569.5
The average results over 30 trails of HDE, SaDE and NSDE €S in Tgble 2, where
“Mean” indicates the mean best function values, and “Std Dev” s or the st deviation. The
results of SaDE and NSDE are taken form Table 2 and 3 in [13}@Fro results t cane be seen that

HDE outperforms SaDE and NSDE on functions fi, /5, fs a
on functions £, and fs. For function fg, all the three alg
achieves better results than NSDE and HDE on functi
DE algorithms on function f4. Both SaDE and NSDE a

nd si ly improve the results

thms obtain the Yime performance. SaDE

3, while N®DE outperforms the other two
e better gesults than IDE on function fs.

Conclusion

DE algorithms falls into local minima on function fs. It
ategy is not suitable for all kinds of problems. It is worth to

continuous spaces. J. Global Optimization, (1997), pp. 341

and R. Thomsen, A comparative study of differential evolution, particle swarm
fon, and evolutionary algorithms on numerical benchmark problems, Proceedings of the
2004 Congress on Evolutionary Computation, vol. 2 (2004), pp. 1980.

[3] J. H. Holland, Adaptation in Natural and Artificial Systems. Ann Arbor, MI: The University of
Michigan Press, (1975)

[4] R. Gamperle, S. D. Muller and A. Koumoutsakos, Parameter study for differential evolution, in
WSEAS NNA-FSFS-EC 2002, Interlaken, Switzerland, (2002)

[5] J. Ronkkonen, S. Kukkonen and K. V. Price, Real parameter optimization with differential
evolution, in Proc. Congr. Evol. Comput. (CEC), vol. 1 (2005), pp. 506



320 Advanced Measurement and Test X

[6] J. Liu, and J. Lampinen, A fuzzy adaptive differential evolution algorithm, Soft Computing-A
Fusion of Foundations, Methodologies and Applications, (2005), pp. 448

[7] A. K. Qin, and P. N. Suganthan, Self-adaptive differential evolution algorithm for numerical
optimization. Proc. Congr. Evol. Comput., (2005), pp. 1785

[8] J. Brest, S. Greiner, B. Boskovic, M. Mernik and V. Zumer, Self-adapting control parameters in
differential evolution: A comparative study on numerical benchmark problems, IEEE Trans.
Evol. Comput., (2006), pp. 646

[9] Z. Yang, J. He, and X. Yao, Making a difference to differential evolution, Advance in
Metaheuristics for Hard Optimization, (2008), pp. 397

[10] M. M. Ali and A. Torn, Population set-based global optimization alg
modifications and numerical studies, Comput. Oper. Res., (2004), pp. 1703

vol. 3(1999), pp. 82

[13] Z. Yang, K. Tang and X. Yao, Self-adaptive differentia
Proceedings of Congress on Evolutionary Computati



