Target Detection and Tracking Based on Ship Borne Infrared Imagery


Article Preview

A novel automatic target detection and tracking algorithm for tracking targets based on ship borne infrared imagery is proposed in this paper. The algorithm has two modes: detection and tracking. In detection mode, the proposed algorithm utilized difference between the consecutive frames and top-hat filter to determine the target position. In tracking mode, the Intensity Variation Function (IVF) is utilized. Before tracking and location the new position, the algorithm should determine the IVF whether reliable. If unreliable, the mode turns to detection. Experimental results by using real-life infrared image sequence are shown to validate the robustness of the proposed technique.



Key Engineering Materials (Volumes 439-440)

Edited by:

Yanwen Wu






W. H. Hu et al., "Target Detection and Tracking Based on Ship Borne Infrared Imagery", Key Engineering Materials, Vols. 439-440, pp. 546-551, 2010

Online since:

June 2010




[1] A. Yilmaz, K. Shafique, and M. Shah, Target tracking in airborne forward looking infrared imagery, Image Vision, vol. 21, pp.623-635, (2003).

DOI: 10.1016/s0262-8856(03)00059-3

[2] A. Bal and M. S. Alam, Automatic Target Tracking in FLIR Image Sequences Using Intensity Variation Function and Template Modeling, IEEE transactions on instrumentation and measurement. Oct 2005, vol. 54(5), pp.1846-1852.

DOI: 10.1109/tim.2005.855090

[3] Westall P., Ford J.J., O'Shea P., Hrabar S. Evaluation of maritime vision techniques for aerial search of humans in maritime environments, " Computing: Techniques and Applications, 2008. DICTA , 08. Digital Image. Canberra, Australia. 2008. pp.176-183.

DOI: 10.1109/dicta.2008.89

[4] Dawoud A, Alam MS, Bal A, Loo c. Target tracking in infrared imagery using weighted composite reference function-based decision fusion, IEEE transactions on image processing, 2006 ,vol. 15(2), pp.404-410.

DOI: 10.1109/tip.2005.860626

[5] TOET Alexander, WU Tirui. Small maritime target detection through false color fusion, SPIE-The International Society for Photo-Optical instrumentation Engineers. Orlando, FL, United states ,2008, vol. 6945, pp.9450-9.

DOI: 10.1117/12.773279

[6] Cassasent D. Sub-pixel target detection and tracking, Proc of the SPIE . 1986 , 726. pp.1206-1210.

[7] Iranni M, Rousso B , Peleg S. Detection and tracking multiple moving objects using temporal integration, Second European Conference on Computer Vision. 1992, pp.282-287.

DOI: 10.1007/3-540-55426-2_33

[8] Yang Wei, Zhang Tianwen. A new method for the detection of moving targets in complex scenes, . journal of computer research and development, 1998 , vol. 35(8), pp.724-728.

[9] Rauch H E , Futterman W I , Kemmer D B. Background suppression and tracking with a staring Mosaic sensor, Optical Engineering , 1981 , vol. 20 (1) , pp.128-133.

DOI: 10.1117/12.7972672

[10] Uras S , Girosi F , Verri A. A computational approach to motion perception, Biol Cybern , 1988 , vol. 60, pp.79-87.

DOI: 10.1007/bf00202895

[11] Reichardt W E , Schlogl R W. A two dimensional field theory for motion computation, Biol Cybern , 1988 , vol. 60, pp.23-25.

[12] Markandey V. Motion estimation for moving target detection, IEEE Trans on AES , 1996 , vol. 32(3), pp.866-874.

[13] Li Xiaochun; Sun Peimao; Jin Guofan. A new fast image segmentaion algorithm for moving object imaged in complex background, Infrared And Laser Engineering, 1996 , vol. 25(5), pp.30-35.

In order to see related information, you need to Login.