Carbon Nanotube Composite Scaffolds and Coatings for Tissue Engineering Applications

Abstract:

Article Preview

Carbon nanotubes (CNTs) are composed of two-dimensional hexagonal graphite sheets rolled up to form into a seamless hollow tube or cylinder of diameters ranging from 0.7 to 100 nm and length of several micrometres up to several millimetres [1, 2]. CNTs can be synthesised in two configurations, as single-walled nanotubes (SWCNTs) and multi-walled nanotubes (MWCNTs). Whereas SWCNTs are made of one tubular structure, MWCNTs consist of concentrically arranged carbon tubes with a typical spacing of ≈ 0.34 nm between the different layers. Owing to their remarkable structural characteristics (light weight, high aspect ratio, high specific surface area), as well as attractive mechanical (high stiffness and strength), electrical (high conductivity) and chemical (versatile surface chemistry, easily to functionalise) properties [2], there is increasing interest in biomedical applications of CNTs.

Info:

Periodical:

Edited by:

M. Vallet-Regí and M. Vila

Pages:

31-52

Citation:

A. R. Boccaccini and L. C. Gerhardt, "Carbon Nanotube Composite Scaffolds and Coatings for Tissue Engineering Applications", Key Engineering Materials, Vol. 441, pp. 31-52, 2010

Online since:

June 2010

Export:

Price:

$38.00

[1] S. Iijima: Nature Vol. 354 (1991), p.56.

[2] A. A. White, S. M. Best and I. A. Kinloch: Int. J. Appl. Ceram. Technol. Vol. 4 (2007), p.1.

[3] W. Wang, P. Ciselli, E. Kuznetsov, T. Peijs and A. H. Barber: Philos. Transact. A Math. Phys. Eng. Sci. Vol. 366 (2008), p.1613.

[4] B. Marrs, R. Andrews, T. Rantell and D. Pienkowski: J. Biomed. Mater. Res. A Vol. 77 (2006), p.269.

[5] P. W. Barone, S. Baik, D. A. Heller and M. S. Strano: Nat. Mater. Vol. 4 (2005), p.86.

[6] M. Kaempgen and S. Roth: J. Electroanal. Chem. Vol. 586 (2006), p.72.

[7] M. Radosavljevic, M. Freitag, K. V. Thadani and A. T. Johnson: Nano Lett. Vol. 2 (2002), p.761.

[8] D. A. Heller, S. Baik, T. E. Eurell and M. S. Strano: Adv. Mater. Vol. 17 (2005), p.2793.

[9] P. Cherukuri, S. M. Bachilo, S. H. Litovsky and R. B. Weisman: J. Am. Chem. Soc. Vol. 126 (2004), p.15638.

[10] D. L. Shi, J. Lian, W. Wang, G. K. Liu, P. He, Z. Dong, L. M. Wang and R. C. Ewing: Adv. Mater. Vol. 18 (2006), p.189.

[11] R. Singh, D. Pantarotto, L. Lacerda, G. Pastorin, C. d. Klumpp, M. Prato, A. Bianco and K. Kostarelos: Proc. Natl. Acad. Sci. U. S. A. Vol. 103 (2006), p.3357.

[12] B. Sitharaman, K. R. Kissell, K. B. Hartman, L. A. Tran, A. Baikalov, I. Rusakova, Y. Sun, H. A. Khant, S. J. Ludtke, W. Chiu, S. Laus, E. Toth, L. Helm, A. E. Merbach and L. J. Wilson: Chem. Commun. Vol. (2005), p.3915.

DOI: https://doi.org/10.1039/b504435a

[13] D. Cai, J. M. Mataraza, Z. H. Qin, Z. P. Huang, J. Y. Huang, T. C. Chiles, D. Carnahan, K. Kempa and Z. F. Ren: Nat. Methods Vol. 2 (2005), p.449.

[14] N. W. S. Kam, Z. Liu and H. J. Dai: J. Am. Chem. Soc. Vol. 127 (2005), p.12492.

[15] D. Pantarotto, R. Singh, D. McCarthy, M. Erhardt, J. P. Briand, M. Prato, K. Kostarelos and A. Bianco: Angew. Chem. Int. Ed. Vol. 43 (2004), p.5242.

DOI: https://doi.org/10.1002/anie.200460437

[16] N. Venkatesan, J. Yoshimitsu, Y. Ito, N. Shibata and K. Takada: Biomaterials Vol. 26 (2005), p.7154.

[17] S. Ramakrishna, J. Mayer, E. Wintermantel and K. W. Leong: Compos. Sci. Technol. Vol. 61 (2001), p.1189.

[18] B. S. Harrison and A. Atala: Biomaterials Vol. 28 (2007), p.344.

[19] N. Saito, Y. Usui, K. Aoki, N. Narita, M. Shimizu, K. Hara, N. Ogiwara, K. Nakamura, N. Ishigaki, H. Kato, S. Taruta and M. Endo: Chem. Soc. Rev. Vol. 38 (2009), p.1897.

DOI: https://doi.org/10.1039/b804822n

[20] J. V. Veetil and K. Ye: Biotechnol. Prog. Vol. 25 (2009), p.709.

[21] F. H. Gojny, M. H. G. Wichmann, U. Köpke, B. Fiedler and K. Schulte: Compos. Sci. Technol. Vol. 64 (2004), p.2363.

[22] F. L. Matthews and R. D. Rawlings: Composite materials: engineering and science (Woodhead Publishing Limited, CRC Press, 2006).

[23] X. P. Wang, J. D. Ye, Y. J. Wang and L. Chen: J. Am. Chem. Soc. Vol. 90 (2007), p.962.

[24] L. P. Zhao and L. Gao: Carbon Vol. 42 (2004), p.423.

[25] X. Shi, B. Sitharaman, Q. P. Pham, F. Liang, K. Wu, W. Edward Billups, L. J. Wilson and A. G. Mikos: Biomaterials Vol. 28 (2007), p.4078.

[26] I. Armentano, M. Dottori, D. Puglia and J. M. Kenny: J. Mater. Sci. Mater. Med. Vol. 19 (2008), p.2377.

[27] Y. H. Meng, C. Y. Tang, C. P. Tsui and D. Z. Chen: J. Mater. Sci. Mater. Med. Vol. 19 (2008), p.75.

[28] X. F. Shi, J. L. Hudson, P. P. Spicer, J. M. Tour, R. Krishnamoorti and A. G. Mikos: Biomacromolecules Vol. 7 (2006), p.2237.

[29] X. Shi, B. Sitharaman, Q. P. Pham, P. Spicer, P., J. Hudson, L., L. J. Wilson, J. M. Tour, R. M. Raphael and A. Mikos, G.: J. Biomed. Mater. Res. A Vol. 86A (2008), p.813.

DOI: https://doi.org/10.1002/jbm.a.31671

[30] S. F. Wang, L. Shen, W. D. Zhang and Y. J. Tong: Biomacromolecules Vol. 6 (2005), p.3067.

[31] J. Ayutsede, M. Gandhi, S. Sukigara, H. H. Ye, C. M. Hsu, Y. Gogotsi and F. Ko: Biomacromolecules Vol. 7 (2006), p.208.

DOI: https://doi.org/10.1021/bm0505888

[32] A. Helland, P. Wick, A. Koehler, K. Schmid and C. Som: Environ. Health Perspect. Vol. 115 (2007), p.1125.

[33] C. W. Lam, J. T. James, R. McCluskey, S. Arepalli and R. L. Hunter: Crit. Rev. Toxicol. Vol. 36 (2006), p.189.

[34] E. J. O'Flaherty: Toxicol. Appl. Pharmacol. Vol. 111 (1991), p.332.

[35] P. Woźniak and A. J. El Haj, in: Bone regeneration and repair using tissue engineering in Tissue engineering using ceramics and polymers, edited by A. R. Boccaccini and J. E. Gough, Woodhead Publishing Limited CRC Press, Cambridge, England (2007).

DOI: https://doi.org/10.1533/9781845693817.2.294

[36] E. A. Calmar and R. J. Vinci: Clin. Pediatr. Emerg. Med. Vol. 3 (2002), p.85.

[37] E. J. O'Flaherty: Toxicol. Appl. Pharmacol. Vol. 111 (1991), p.299.

[38] H. M. Frost: Bone Vol. 23 (1998), p.395.

[39] V. Karageorgiou and D. Kaplan: Biomaterials Vol. 26 (2005), p.5474.

[40] K. Rezwan, Q. Z. Chen, J. J. Blaker and A. R. Boccaccini: Biomaterials Vol. 27 (2006), p.3413.

[41] A. R. Boccaccini and J. E. Gough: Tissue engineering using ceramics and polymers (Woodhead Publishing Limited CRC Press, 2007).

[42] G. Jell, R. Verdejo, L. Safinia, M. S. P. Shaffer, M. M. Stevens and A. Bismarck: J. Mater. Chem. Vol. 18 (2008), p.1865.

[43] L. P. Krul, A. I. Volozhyn, D. A. Belov, N. A. Poloiko, A. S. Artushkevich, S. A. Zhdanok, A. P. Solntsev, A. V. Krauklis and I. A. Zhukova: Biomol. Eng. Vol. 24 (2007), p.93.

DOI: https://doi.org/10.1016/j.bioeng.2006.05.021

[44] S. K. Misra, P. C. P. Watts, S. P. Valappil, S. R. P. Silva, I. Roy and A. R. Boccaccini: Nanotechnology Vol. 18 (2007), p.075701 (p.7).

[45] D. Zhang, M. A. Kandadai, J. Cech, S. Roth and S. A. Curran: J. Phys. Chem. B Vol. 110 (2006), p.12910.

[46] A. Abarrategi, M. C. Gutiérrez, C. Moreno-Vicente, M. J. Hortigüela, V. Ramos, J. L. López-Lacomba, M. L. Ferrer and F. del Monte: Biomaterials Vol. 29 (2008), p.94.

DOI: https://doi.org/10.1016/j.biomaterials.2007.09.021

[47] P. R. Supronowicz, P. M. Ajayan, K. R. Ullmann, B. P. Arulanandam, D. W. Metzger and R. Bizios: J. Biomed. Mater. Res. A Vol. 59 (2002), p.499.

[48] S. D. McCullen, D. R. Stevens, W. A. Roberts, L. I. Clarke, S. H. Bernacki, R. E. Gorga and E. G. Loboa: Int. J. Nanomedicine Vol. 2 (2007), p.253.

[49] B. Sitharaman, X. Shi, X. F. Walboomers, H. Liao, V. Cuijpers, L. J. Wilson, A. G. Mikos and J. A. Jansen: Bone Vol. 43 (2008), p.362.

[50] C. Kealley, M. Elcombe, A. van Riessen and B. Ben-Nissan: Physica B Vol. 385-386 (2006), p.496.

DOI: https://doi.org/10.1016/j.physb.2006.05.254

[51] C. Kean Khoon, L. Kah Ling, S. H. S. Zein, L. -C. Gerhardt, J. A. Roether and A. R. Boccaccini: submitted to: Materials Science and Engineering: C.

[52] T. Shokuhfar, A. Makradi, E. Titus, G. Cabral, S. Ahzi, A. C. M. Sousa, S. Belouettar and J. Gracio: J. Nanosci. Nanotechnol. Vol. 8 (2008), p.4279.

DOI: https://doi.org/10.1166/jnn.2008.an26

[53] W. Wang, F. Watari, M. Omori, S. Liao, Y. Zhu, A. Yokoyama, M. Uo, H. Kimura and A. Ohkubo: J. Biomed. Mater. Res. Part B Vol. 82 (2007), p.223.

[54] T. Kokubo, H. M. Kim and M. Kawashita: Biomaterials Vol. 24 (2003), p.2161.

[55] G. Murasawa, H. Cho and K. Ogawa: Mech. Mater. Vol. 41 (2009), p.810.

[56] T. Kokubo, H. Kushitani, S. Sakka, T. Kitsugi and T. Yamamuro: J. Biomed. Mater. Res. Vol. 24 (1990), p.721.

[57] N. Lucas, C. Bienaime, C. Belloy, M. Queneudec, F. Silvestre and J. -E. Nava-Saucedo: Chemosphere Vol. 73 (2008), p.429.

DOI: https://doi.org/10.1016/j.chemosphere.2008.06.064

[58] S. K. Misra and A. R. Boccaccini, in: Biodegradable and bioactive polymer/ceramic composite scaffolds in Tissue engineering using ceramics and polymers, edited by A. R. Boccaccini and J. E. Gough, Woodhead Publishing Limited CRC Press, Cambridge, England (2007).

DOI: https://doi.org/10.1533/9781845693817.1.72

[59] Y. Tabata: J. R. Soc. Interface Vol. 6 Suppl 3 (2009), p. S311.

[60] A. R. Boccaccini, F. Chicatun, J. Cho, O. Bretcanu, J. A. Roether, S. Novak and Q. Z. Chen: Adv. Funct. Mater. Vol. 17 (2007), p.2815.

[61] J. Cho, M. Cannio, A. R. Boccaccini, Int. J. Mater. Prod. Technol. Vol. 35 (2009), p.260.

[62] E. Zawadzak, M. Bil, J. Ryszkowska, S. Nazhat, N., J. Cho, O. Bretcanu, J. A. Roether and A. R. Boccaccini: Biomed. Mater. Vol. 4 (2009), p.015008 (p.9).

DOI: https://doi.org/10.1088/1748-6041/4/1/015008

[63] A. R. Boccaccini, I. Zhitomirsky, Curr. Opin. Solid State Mater. Sci. Vol. 6 (2002), p.251.

[64] A. R. Boccaccini, J. Cho, J. A. Roether, B. J. C. Thomas, E. J. Minay, M. S. P. Shaffer, Carbon, Vol. 44 (2006) p.3149.

[65] A. R. Boccaccini, J. Cho, T. Subhani, C. Kaya, F. Kaya, J. Eur. Ceram. Soc. Vol. 30 (2010), p.1115.

[66] M. C. Schausten, D. Meng, R. Telle, A. R. Boccaccini, Ceram. Int. Vol. 36 (2010), p.307.

[67] T. J. Klein, B. L. Schumacher, T. A. Schmidt, K. W. Li, M. S. Voegtline, K. Masuda, E. J. M. A. Thonar and R. L. Sah: Osteoarthr. Cartilage Vol. 11 (2003), p.595.

[68] H. J. Mankin: J. Bone Joint Surg. Am. Vol. 64 (1982), p.460.

[69] J. Iwasa, L. Engebretsen, Y. Shima and M. Ochi: Knee Surg. Sports Traumatol. Arthrosc. Vol. 17 (2009), p.561.

DOI: https://doi.org/10.1007/s00167-008-0663-2

[70] J. M. Wozney and H. J. Seeherman: Curr. Opin. Biotechnol. Vol. 15 (2004), p.392.

[71] L. A. Macginitie, Y. A. Gluzband and A. J. Grodzinsky: J. Orthop. Res. Vol. 12 (1994), p.151.

[72] D. Khang, S. Y. Kim, P. Liu-Snyder, G. T. R. Palmore, S. M. Durbin and T. J. Webster: Biomaterials Vol. 28 (2007), p.4756.

[73] D. Khang, G. E. Park and T. J. Webster: J. Biomed. Mater. Res. A Vol. 86A (2008), p.253.

[74] L. Zhang and T. J. Webster: Nano Today Vol. 4 (2009), p.66.

[75] J. Meng, H. Kong, Z. Han, C. Wang, G. Zhu, S. Xie and H. Xu: J. Biomed. Mater. Res. A Vol. 88 (2009), p.105.

[76] F. Mei, J. Zhong, X. Yang, X. Ouyang, S. Zhang, X. Hu, Q. Ma, J. Lu, S. Ryu and X. Deng: Biomacromolecules Vol. 8 (2007), p.3729.

[77] E. Yildirim, D., X. Yin, K. Nair and W. Sun: J. Biomed. Mater. Res. Part B Vol. 87B (2008), p.406.

[78] M. Kawaguchi, T. Fukushima, T. Hayakawa, N. Nakashima, Y. Inoue, S. Takeda, K. Okamura and K. Taniguchi: Dent. Mater. J. Vol. 25 (2006), p.719.

[79] J. Meng, H. Kong, H. Y. Xu, L. Song, C. Y. Wang and S. S. Xie: J. Biomed. Mater. Res. A Vol. 74A (2005), p.208.

[80] Z. Han, H. Kong, J. Meng, C. Wang, S. Xie and H. Xu: J. Nanosci. Nanotechnol. Vol. 9 (2009), p.1400.

[81] M. Endo, S. Koyama, Y. Matsuda, T. Hayashi and Y. A. Kim: Nano Lett. Vol. 5 (2005), p.101.

[82] R. MacDonald, A., B. Laurenzi, F., B. Viswanathan, F., P. Ajayan, M. and J. Stegemann, P.: J. Biomed. Mater. Res. A Vol. 74A (2005), p.489.

[83] R. A. MacDonald, C. M. Voge, M. Kariolis and J. P. Stegemann: Acta Biomater. Vol. 4 (2008), p.1583.

[84] C. M. Voge, M. Kariolis, R. A. MacDonald and J. P. Stegemann: J. Biomed. Mater. Res. A Vol. 86 (2008), p.269.

[85] B. C. Thompson, S. E. Moulton, K. J. Gilmore, M. J. Higgins, P. G. Whitten and G. G. Wallace: Carbon Vol. 47 (2009), p.1282.

[86] S. L. Goodman, P. A. Sims and R. M. Albrecht: Biomaterials Vol. 17 (1996), p. (2087).

[87] H. A. Linares: Burns Vol. 22 (1996), p.339.

[88] R. Schleip, A. Zorn, M. J. Els and W. Klingler, in: Myofibroblasts and fascial tonus regulation: The European Fascia Research Project in Fascia Research - Basic Science and Implications for Conventional and Complementary Health Care, edited by T. W. Findley and R. Schleip, Elsevier, Munich (2007).

[89] C. W. J. Oomens, D. H. Vancampen and H. J. Grootenboer: J. Biomech. Vol. 20 (1987), p.877.

[90] L. -C. Gerhardt, A. Lenz, N. D. Spencer, T. Münzer and S. Derler: Skin Res. Technol. Vol. 15 (2009), p.288.

[91] J. F. M. Manschot and A. J. M. Brakkee: J. Biomech. Vol. 19 (1986), p.511.

[92] S. Diridollou, V. Vabre, M. Berson, L. Vaillant, D. Black, J. M. Lagarde, J. M. Gregoire, Y. Gall and F. Patat: Int. J. Cosmet. Sci. Vol. 23 (2001), p.353.

DOI: https://doi.org/10.1046/j.0412-5463.2001.00105.x

[93] E. R. Edelman and H. M. Nugent: J. Vasc. Surg. Vol. 31 (2000), p.1268.

[94] V. Mironov, V. Kasyanov and R. R. Markwald: Trends Biotechnol. Vol. 26 (2008), p.338.

[95] P. L. A. Giesen, U. Rauch, B. Bohrmann, D. Kling, M. Roque, J. T. Fallon, J. J. Badimon, J. Himber, M. A. Riederer and Y. Nemerson: Proc. Natl. Acad. Sci. U. S. A. Vol. 96 (1999), p.2311.

DOI: https://doi.org/10.1073/pnas.96.5.2311

[96] H. Jawad, N. N. Ali, A. R. Lyon, Q. Z. Chen, S. E. Harding and A. R. Boccaccini: J. Tissue Eng. Regen. Med. Vol. 1 (2007), p.327.

[97] C. E. Schmidt and J. B. Leach: Annu. Rev. Biomed. Eng. Vol. 5 (2003), p.293.

[98] H. Cao, T. Liu and S. Y. Chew: Adv. Drug Delivery Rev. Vol. 61 (2009), p.1055.

[99] A. Kotwal and C. E. Schmidt: Biomaterials Vol. 22 (2001), p.1055.

[100] T. Crouzier, A. Nimmagadda, M. U. Nollert and P. S. McFetridge: Langmuir Vol. 24 (2008), p.13173.