New Trends in Wide Bandgap Semiconductors: Synthesis of Single Crystalline Silicon Carbide Layers by Low Pressure Chemical Vapor Deposition Technique on P-Type Silicon (100 and/or 111) and their Characterization

Abstract:

Article Preview

We report the growth of SiC layers on low cost p-type silicon (100 and/or 111) substrates maintained at constant temperature (1050 - 1350oC, ∆T=50oC) in a low pressure chemical vapor deposition reactor. Typical Fourier transform infrared spectrum showed a dominant peak at 800 cm-1 due to Si-C bond excitation. Large area x-ray diffraction spectra revealed single crystalline cubic structures of 3C-SiC(111) and 3C-SiC(200) on Si(111) and Si(100) substrates, respectively. Cross-sectional views exposed by scanning electron microscopy display upto 104 µm thick SiC layer. Energy dispersive spectroscopy of the layers demonstrated stiochiometric growth of SiC. Surface roughness and morphology of the films were also checked with the help of atomic force microscopy. Resistivity of the as-grown layers increases with increasing substrate temperature due to decrease of isolated intrinsic defects such as silicon and/or carbon vacanies having activation energy 0.59 ±0.02 eV.

Info:

Periodical:

Main Theme:

Edited by:

Shaheed Khan, Iftikhar us Salam and Karim Ahmed

Pages:

195-201

DOI:

10.4028/www.scientific.net/KEM.442.195

Citation:

F. Iqbal et al., "New Trends in Wide Bandgap Semiconductors: Synthesis of Single Crystalline Silicon Carbide Layers by Low Pressure Chemical Vapor Deposition Technique on P-Type Silicon (100 and/or 111) and their Characterization", Key Engineering Materials, Vol. 442, pp. 195-201, 2010

Online since:

June 2010

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.