The Effect of Sn on the Impedance Behaviour of Al-Zn Alloys in Natural Chloride Solution


Article Preview

Electrochemical behaviour of cast Al-Zn alloys in natural chloride solution were investigated by potentiodynamic measurements and electrochemical impedance spectroscopy (EIS). Results from open circuit potential (OCP) measurement against immersion time showed a stable free corrosion process was achieved after 15 kiloseconds and alloys with more Sn contents had shifted OCP value towards more negative direction. Potentiodynamic polarisation curves showed that the corrosion potential (Ecorr) of aluminium alloys with Sn addition were much active compared to alloy without Sn. The anodic curves were characterized by no sign of passive current due active dissolution on the surface of the Al-Zn-Sn alloy. SEM images show that the presence of Sn in Al-Zn alloys produces better and uniform dissolution morphology. EIS results confirm that the presence of Sn is beneficial in improving anodic dissolution of Al-Zn alloys by reducing resistance to polarization (Rp). The presence of 0.1%wt. Sn in Al-Zn alloy has been found to be useful in activating electrochemical reaction at alloy-solution interface based on inductive loop in EIS diagram.



Main Theme:

Edited by:

Shaheed Khan, Iftikhar us Salam and Karim Ahmed






M.C. Isa et al., "The Effect of Sn on the Impedance Behaviour of Al-Zn Alloys in Natural Chloride Solution", Key Engineering Materials, Vol. 442, pp. 322-329, 2010

Online since:

June 2010




[1] H. Wojtas, S. Virtanen and H. Böhni: Corrosion Science Vol. 37 (1995), p.793.

[2] G. A. El-Mahdy, A. Nishikata and C. Leygraf: Corrosion Science Vol. 42 (2000), p.1509.

[3] S. C. Chung, J. R. Cheng, S. D. Chiou and H. C. Shih: Corrosion Science Vol. 42 (2000), p.1249.

[4] M. A. M. Emilse and L. M. Iduvirges: Corrosion Science Vol. 42 (2000), p.443.

[5] L. de A. Sérgio, W. Stephan and C. Isolda: Electrochemica Acta Vol. 51 (2006), p.1815.

[6] Q. Yang and J. L. Luo: Electrochimica Acta Vol. 45 (2000), p.3927.

[7] S. Fanny, B. Christine and P, Nadine: Surface and Coatings Tech. Vol. 154 (2002), p.94.

[8] H. B. Shao, J. M. Wang, Z. Zhang, J. Q. Zhang, and C. N. Cao: Jou. of Electroanalytical Chemistry Vol. 549 (2003), p.145.

[9] M.A. Christopher, D. Lidia, T. Bruno, F. Robert and M. Sascha: Electrochemica Acta Vol. 51 (2006), p.1752.

[10] ASTM E 34-85: American Society for Testing and Materials (1985), Philadelphia, USA.

[11] ASTM G 97-97: American Society for Testing and Materials (1997), Philadelphia, USA.

[12] J. B. Bessone, R. A. S. Baldo and S. M. Micheli: Corrosion Vol. 37 (1981), p.533.

[13] D. R. Salinas, S. G Garcia and J. B. Bessone: J. of Appl. Electrochem. Vol. 29 (1999), p.1063.

[14] G. Bruzzone, A. Barbucci, and G. Cerisola: J. of Alloys & Comp Vol. 247 (1997), p.210.

[15] A. Nagiub and F. Mansfeld: Corrosion Science Vol. 43 (2001), p.2147.

[16] S. Franger, S. Bach, J. Farcy, J. P. Pereira Ramos and N. Baffier: Electrochimica Acta Vol. 48 (2003), p.891.

[17] C. Cachnet, F. Ganne, G. Maurin, J. Petitjean, V. Vivier and R. Wiart: Electrochimica Acta Vol. 47 (2001), p.509.

DOI: 10.1016/s0013-4686(01)00740-x

[18] M. A. Talavera, S. Valdez, J. A. Juarez-Islas, B. Mena and J. Genesca: J. of Appl. Electrochem. Vol. 32 (2002), p.897.

DOI: 10.1023/a:1020547508321

[19] A. Venugopal, R. D. Angal and V. S. Raja: Corrosion Vol 52 (1996), p.138.

[20] M. Keddam, C. Kuntz, H. Takenouti, , D. Schuster, and D. Zuili: Electrochimica Acta Vol. 42 (1997), p.87.

[21] S. L. Erricker and J. D. Scantlebury: Mater. Sci. Forum Vol. 192-194 (1995), p.623.

In order to see related information, you need to Login.