Introduction to the Nanoworld


Article Preview

Nanosciences and nanotechnology (NST) constitute currently a major research field all over the world. NST deal with the study of phenomena and manipulation of materials at atomic, molecular and macromolecular scales, where properties differ significantly from those at the larger scale. The properties of materials can be different at the nanoscale for two main reasons : size and quantum effects. Effects negligible at the macroscopic level become important at the nanometer scale, and vice versa. Scaling laws are described in order to understand some differences. Moreover, geometric arguments are necessary to understand the origin of some physical and chemical properties of nanosystems. On the other hand, quantum effects can begin to dominate the behaviour of matter at the nanoscale – particularly at the lower end – affecting the optical, electrical and magnetic behaviour of materials. The characteristic dimensions for which the properties change from the “macro-“ to the “nano-“ regimes are discussed.



Edited by:

Grégory Guisbiers and Dibyendu Ganguli




M. Wautelet, "Introduction to the Nanoworld", Key Engineering Materials, Vol. 444, pp. 1-15, 2010

Online since:

July 2010





[1] Royal Society & The Royal Academy of Engineering 2004 Nanosciences and nanotechnologies : opportunities and uncertainties (www. royalsoc. ac. uk/policy).

[2] M. Wautelet : Eur. J. Phys. Vol. 22 (2001), p.601.

[3] D. Duvivier, O. Van Overschelde and M. Wautelet : Eur. J. Phys. Vol. 29 (2008) p.467.

[4] K. Kendall : Science Vol. 263 (1994), p.1720.

[5] A. W. Adamson : Physical Chemistry of Surfaces (Wiley, New York 1976).

[6] M. Wautelet : Eur. J. Phys. Vol 20 (1999) p. L29.

[7] T. Baumberger and C. Caroli : MRS Bull. Vol 23 (6) (1998) p.41.

[8] A. C. Melissinos : Physics of modern technology (Cambridge University Press, Cambridge 1990).

[9] S. M. Sze : Physics of Semiconductor Devices (Wiley, New York 1969).

[10] P. Roura, J. Fort and J. Saurina : Eur. J. Phys. Vol 21 (2000) p.95.

[11] M. Wautelet : Sciences, technologies et société (DeBoeck, Bruxelles 2001).

[12] E. Osawa, M. Yoshida and M. Fujita : MRS Bull. Vol 19 (11) (1994) p.33.

[13] M. J. Yacaman, J. A. Ascencio, H.B. Liu and J. Gardea-Torresdey : J. Vac. Sci. Technol. B Vol 19 (2001) p.1091.

[14] M. Guisnet : Zeolites for Cleaner Technologies (Imperial College Press, London 2002).

[15] M. J. O'Connell (ed) : Carbon nanotubes : Properties and applications (Taylor & Francis, Boca Raton 2006).

[16] A. Züttel and S. I. Orimo : MRS Bull. Vol 27 (2002) p.705.

[17] J. Schindall : IEEE Spectrum Vol 44(11) (2007) p.38.

[18] K. Autumn : MRS Bull. Vol 32(6) (2007) 473.

[19] M. Wautelet : Eur. Phys. J. Appl. Phys. Vol 29 (2005) p.51.

[20] G. Abudukelimu, G. Guisbiers and M. Wautelet : J. Mater. Res. Vol 21 (2006) p.2829.

[21] M. Wautelet : Eur. J. Phys. Vol 16 (1995) p.283.

[22] M. Wautelet M (ed) : Les Nanotechnologies (Dunod, Paris 2007).

[23] D. G. Cahill D G et al : J. Appl. Phys. 93 (2003) p.793.

[24] C. Kittel : Physique de l'état solide (Dunod, Paris 1998).

[25] V. E. Borisenko and S. Ossicini : What is What in the Nanoworld (Wiley-VCH, Weinheim 2004).

[26] Y. Murayama : Mesoscopic Systems (Wiley-VCH, Weinheim 2001).