Comparison of Thermal Stability of Epitaxially Grown (La0.5Sr0.5)CoO3 and (La0.6Sr0.4)MnO3 Thin Films Deposited on Si Substrate


Article Preview

Thermal stability of bottom electrode thin films (La0.5Sr0.5)CoO3 (LSCO) and (La0.6Sr0.4)MnO3 (LSMO) were investigated. The crystallization and surface morphology of the heterostructure were characterized using x-ray diffraction and atomic force microscopy. Resistivity of the LSCO thin film was 25 cm. However, the resistivity of LSCO thin film increases sharply with annealing temperature. The LSMO thin film has high resistivity (100 mcm). The film does not decompose after thermal processing at 900 °C. To confirm thermal stability, we examined the effect of post annealing at various temperatures on the morphology and resistivity. Results showed that LSMO has higher thermal stability than that of LSCO.



Edited by:

Shinobu Fujihara and Tadashi Takenaka




S. Sawamura et al., "Comparison of Thermal Stability of Epitaxially Grown (La0.5Sr0.5)CoO3 and (La0.6Sr0.4)MnO3 Thin Films Deposited on Si Substrate", Key Engineering Materials, Vol. 445, pp. 160-163, 2010

Online since:

July 2010




[1] T. Kimura, T. Goto, H. Shintani, K. Ishizaka, T. Arima, and Y. Tokura: Nature 426 (2003) 55.

[2] T. Kimura, G. Lawes, T. Goto, Y. Tokura, and A. P. Ramirez: Phys. Rev. B 71 (2005)224425.

[3] N. Hur, S. Park, P. A. Sharma, J. S. Ahn, S. Guha, and S. W. Cheong: Nature 429 (2004) 392.

[4] J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D. G. Schlom, U. V. Waghmare, N. A. Spaldin, K. M. Rabe, M. Wuttig, and R. Ramesh: Science 299 (2002) 1719.

[5] N. Momozawa and Y. Yamaguchi: J. Phys. Soc. Jpn. 62 (1993) 1292.

[6] H. Tabata and T. Kawai: IEICE Trans. Electron. E-80C (1997) 918.

[7] M. Ziese, A. Bollero, I. Panagiotopoulos, and N. Moutis: Appl. Phys. Lett. 88 (2006) 212502.


[8] M. P. Singh, W. Prellier, L. Mechin, C. Simon, and B. Raveau: J. Appl. Phys. 99 (2006) 024105.

[9] H. Zheng, J. Wang, S. E. Lofland, Z. Ma, L. M. Ardabili, T. Zhao, L. S. Riba, S. R. Shinde, S. B. Ogale, F. Bai, D. Viehland, Y. Jia, D. G. Schlom, M. Wuttig, A. Roytburd, and R. Ramesh: Science 303 (2004) 661.


[10] W. Chen, Z. H. Wang, C. Ke, W. Zhu, and O. K. Tan: Mater. Sci. Eng. B162 (2009) 47.

[11] I. Levin, J. Li, J. Slutsker, and A. L. Roytburd: Adv. Mater. 18 (2006) (2044).

[12] Q. Zhang, R. Yu, S. P. Crane, H. Zheng, C. Kisielowski, and R. Ramesh: Appl. Phys. Lett. 89 (2006) 172902.

[13] R. Muralidharan, N. Dix, V. Skumryev, M. Varela, F. Sánchez, and J. Fontcuberta: J. Appl. Phys. 103 (2008) 07E301.

[14] S. Sawamura, N. Wakiya, N. Sakamoto, K. Shinozaki, and H. Suzuki: Jpn. J. Appl. Phys. 47 (2008) 7603.

[15] H-Y. Go Studies on crystal orientation and electrical properties of epitaxial ferroelectric thin films on Si and YSZ substrates by introducing buffer layers, (Ph. D. thesis, Tokyo Institute of Technology, 2009).

[16] D. B. Fenner, D. K. Fork, G. A. N. Connell, J. B. Boyce, F. A. Ponce, J. C. Tramontana, A. M. Viano, and T. H. Geballe: Mater. Res. Soc. Symp. Proc. 191 (1990) 187.

Fetching data from Crossref.
This may take some time to load.