Self-Affine Crack Pattern in Filter Paper Sheets


Article Preview

In this work the self-affine crack pattern in Filter Paper sheets is studied. This paper has a well-defined anisotropy of mechanical properties associated with visible preferable orientation of fibers in the machine direction. Fracture behavior is in essence brittle, the rupture lines have self-affine invariance, and the stresses ahead of the straight notch follow a power-law behavior. The roughness exponent value is of H = 0.50 0.01, different from the suggested universal value H = 0.8. The classical theory has demonstrated that, in materials such as metal, there is a relationship between the size and the starting crack stress, which does not happen in this material. The tests show that the starting crack stress from stress-strain behavior curves remains stable for the different specimen sizes w and crack length size. Moreover, different types of geometric groove, circular and linear, and without a crack, were tested and show almost the same behavior.



Main Theme:

Edited by:

Alexander Balankin, José Martínez Trinidad and Orlando Susarrey Huerta




C. A. Mora Santos et al., "Self-Affine Crack Pattern in Filter Paper Sheets", Key Engineering Materials, Vol. 449, pp. 23-28, 2010

Online since:

September 2010




[1] Anderson T. L. Fracture Mechanics: Fundamentals and Applications. (CRC Press LLC, Boca Raton, Florida, 1995).

[2] Gdoutos, E. E. Fracture Mechanics - An Introduction. (Springer, The Netherlands, 2005).

[3] Kanninen, M. F., Popelar, C. H. Advanced Fracture Mechanics. (Oxford University Press Inc, 1995).

[4] Mandelbrot, B. B. The Fractal Geometry of Nature. (W. H. Freeman and Company, N. Y., 1993).

[5] Mandelbrot, B. B., Passoja, D. E. and Paullay, A. J. Nature, 308 (1984), pp.721-722.

[6] Milman, V. Y., Stelmashenko, N. A., and Blumenfeld, R. Prog. in Mat. Sci. 38 (1994), pp.425-474.

[7] Cherepanov, G.P., Balankin, A.S., and Ivanova, V.S. Eng. Fract. Mech. 51, No. 6 (1995), pp.997-1033.

[8] Balankin, A. S. Eng. Fract. Mech. 57, No. 2/3 (1997), pp.135-203.

[9] Balankin, A. S. Phil. Mag. Lett. 74, No. 6 (1996), pp.415-422.

[10] Balankin, A. S. and Sandoval, F. J. Rev. Mex. Fís. 43, No. 4 (1997), pp.545-591.

[11] Balankin, A. S., and Susarrey H., O. Rev. Mex. Fís. 45, No. 4 (1999), pp.388-392.

[12] Balankin, A. S., Bravo Ortega, A., Galicia Cortéz, M. A., and Susarrey Huerta, O. Int. J. Fract. 79 (1996), p. R63-R68.

[13] Alava, M., Niskanen, K., Rep. Prog. Phys. 69 (2006), pp.669-7223.

[14] Balankin, A. S., Hernández G., L. H., Urriolagoitia C., G., Susarrey H., O., González, J. M. and Martínez T. J. Proc. Roy. Soc. London A. 455 (1999), pp.2565-2575.

[15] Balankin, A. S., and Susarrey H., O. Phil. Mag. Lett. 79, No. 8 (1999), pp.629-637.

[16] Bouchaud, E., Navéos, S. J. Phys. I - France. 5 (1995), pp.547-554.

[17] Hinojosa, M., Reyes-Melo, E., Guerra, C., González, V., Ortiz, U. Int. J. Frac. 151, (2008), pp.81-93.

[18] Daguier, P., Nghiem, B. Bouchaud, E., Creuzet, F. Phys. Rev. Lett. 78 (1997), pp.1062-1065.

[19] Ponson, L., Aurodau, H., Vié, P., Hulin, J. P. Phys. Rev. Lett. 97 (2006), 125501.

[20] Scion Image. 2000-2001, Scion Corporation. www. Scioncorp. com.